Spaces:
Build error
Build error
import argparse | |
import json | |
import os | |
import faiss | |
import torch | |
from datasets import load_dataset, Dataset | |
from tqdm.auto import tqdm | |
from transformers import AutoTokenizer, DPRQuestionEncoder, DPRContextEncoder | |
from common import articles_to_paragraphs, embed_questions, embed_passages, create_kilt_datapoint, \ | |
kilt_wikipedia_columns | |
from common import kilt_wikipedia_paragraph_columns as columns | |
def generate_support_docs(args): | |
dims = 128 | |
min_chars_per_passage = 200 | |
device = ("cuda" if torch.cuda.is_available() else "cpu") | |
lfqa = load_dataset("vblagoje/lfqa") | |
ctx_tokenizer = AutoTokenizer.from_pretrained(args.ctx_encoder_name) | |
ctx_model = DPRContextEncoder.from_pretrained(args.ctx_encoder_name).to(device) | |
_ = ctx_model.eval() | |
question_tokenizer = AutoTokenizer.from_pretrained(args.question_encoder_name) | |
question_model = DPRQuestionEncoder.from_pretrained(args.question_encoder_name).to(device) | |
_ = question_model.eval() | |
kilt_wikipedia = load_dataset("kilt_wikipedia", split="full") | |
kilt_wikipedia_paragraphs = kilt_wikipedia.map(articles_to_paragraphs, batched=True, | |
remove_columns=kilt_wikipedia_columns, | |
batch_size=512, | |
cache_file_name=f"../data/wiki_kilt_paragraphs_full.arrow", | |
desc="Expanding wiki articles into paragraphs") | |
# use paragraphs that are not simple fragments or very short sentences | |
# Wikipedia Faiss index needs to fit into a 16 Gb GPU | |
kilt_wikipedia_paragraphs = kilt_wikipedia_paragraphs.filter( | |
lambda x: (x["end_character"] - x["start_character"]) > min_chars_per_passage) | |
def query_index(question, topk=7): | |
topk = topk * 3 # grab 3x results and filter for word count | |
question_embedding = embed_questions(question_model, question_tokenizer, [question]) | |
scores, wiki_passages = kilt_wikipedia_paragraphs.get_nearest_examples("embeddings", question_embedding, k=topk) | |
retrieved_examples = [] | |
r = list(zip(wiki_passages[k] for k in columns)) | |
for i in range(topk): | |
retrieved_examples.append({k: v for k, v in zip(columns, [r[j][0][i] for j in range(len(columns))])}) | |
return retrieved_examples | |
def create_support_doc(dataset: Dataset, output_filename: str): | |
progress_bar = tqdm(range(len(dataset)), desc="Creating supporting docs") | |
with open(output_filename, "w") as fp: | |
for example in dataset: | |
wiki_passages = query_index(example["title"]) | |
kilt_dp = create_kilt_datapoint(example, columns, wiki_passages) | |
json.dump(kilt_dp, fp) | |
fp.write("\n") | |
progress_bar.update(1) | |
if not os.path.isfile(args.index_file_name): | |
def embed_passages_for_retrieval(examples): | |
return embed_passages(ctx_model, ctx_tokenizer, examples, max_length=128) | |
paragraphs_embeddings = kilt_wikipedia_paragraphs.map(embed_passages_for_retrieval, | |
batched=True, batch_size=512, | |
cache_file_name=args.encoded_kilt_file_name, | |
desc="Creating faiss index") | |
paragraphs_embeddings.add_faiss_index(column="embeddings", custom_index=faiss.IndexFlatIP(dims)) | |
paragraphs_embeddings.save_faiss_index("embeddings", args.index_file_name) | |
kilt_wikipedia_paragraphs.load_faiss_index("embeddings", args.index_file_name, device=0) | |
create_support_doc(lfqa["train"], "lfqa_dpr_train_precomputed_dense_docs.json") | |
create_support_doc(lfqa["validation"], "lfqa_dpr_validation_precomputed_dense_docs.json") | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description="Creates support docs for seq2seq model training") | |
parser.add_argument( | |
"--ctx_encoder_name", | |
default="vblagoje/dpr-ctx_encoder-single-lfqa-base", | |
help="Question encoder to use", | |
) | |
parser.add_argument( | |
"--question_encoder_name", | |
default="vblagoje/dpr-question_encoder-single-lfqa-base", | |
help="Question encoder to use", | |
) | |
parser.add_argument( | |
"--index_file_name", | |
default="../data/kilt_dpr_wikipedia_first.faiss", | |
help="Faiss index with passage embeddings", | |
) | |
parser.add_argument( | |
"--encoded_kilt_file_name", | |
default="../data/kilt_embedded.arrow", | |
help="Encoded KILT file name", | |
) | |
main_args, _ = parser.parse_known_args() | |
generate_support_docs(main_args) | |