Spaces:
Build error
Build error
import torch | |
from transformers import AutoTokenizer, AutoModel | |
from datasets import load_dataset | |
def main(): | |
device = ("cuda" if torch.cuda.is_available() else "cpu") | |
tokenizer = AutoTokenizer.from_pretrained('vblagoje/retribert-base-uncased') | |
model = AutoModel.from_pretrained('vblagoje/retribert-base-uncased').to(device) | |
_ = model.eval() | |
index_file_name = "./data/kilt_wikipedia.faiss" | |
kilt_wikipedia = load_dataset("kilt_wikipedia", split="full") | |
columns = ['kilt_id', 'wikipedia_id', 'wikipedia_title', 'text', 'anchors', 'categories', | |
'wikidata_info', 'history'] | |
min_snippet_length = 20 | |
topk = 21 | |
def articles_to_paragraphs(examples): | |
ids, titles, sections, texts, start_ps, end_ps, start_cs, end_cs = [], [], [], [], [], [], [], [] | |
for bidx, example in enumerate(examples["text"]): | |
last_section = "" | |
for idx, p in enumerate(example["paragraph"]): | |
if "Section::::" in p: | |
last_section = p | |
ids.append(examples["wikipedia_id"][bidx]) | |
titles.append(examples["wikipedia_title"][bidx]) | |
sections.append(last_section) | |
texts.append(p) | |
start_ps.append(idx) | |
end_ps.append(idx) | |
start_cs.append(0) | |
end_cs.append(len(p)) | |
return {"wikipedia_id": ids, "title": titles, | |
"section": sections, "text": texts, | |
"start_paragraph_id": start_ps, "end_paragraph_id": end_ps, | |
"start_character": start_cs, | |
"end_character": end_cs | |
} | |
kilt_wikipedia_paragraphs = kilt_wikipedia.map(articles_to_paragraphs, batched=True, | |
remove_columns=columns, | |
batch_size=256, cache_file_name=f"./wiki_kilt_paragraphs_full.arrow", | |
desc="Expanding wiki articles into paragraphs") | |
# use paragraphs that are not simple fragments or very short sentences | |
kilt_wikipedia_paragraphs = kilt_wikipedia_paragraphs.filter(lambda x: x["end_character"] > 250) | |
kilt_wikipedia_paragraphs.load_faiss_index("embeddings", index_file_name, device=0) | |
def embed_questions_for_retrieval(questions): | |
query = tokenizer(questions, max_length=128, padding=True, truncation=True, return_tensors="pt") | |
with torch.no_grad(): | |
q_reps = model.embed_questions(query["input_ids"].to(device), | |
query["attention_mask"].to(device)).cpu().type(torch.float) | |
return q_reps.numpy() | |
def query_index(question): | |
question_embedding = embed_questions_for_retrieval([question]) | |
scores, wiki_passages = kilt_wikipedia_paragraphs.get_nearest_examples("embeddings", question_embedding, k=topk) | |
columns = ['wikipedia_id', 'title', 'text', 'section', 'start_paragraph_id', 'end_paragraph_id', 'start_character','end_character'] | |
retrieved_examples = [] | |
r = list(zip(wiki_passages[k] for k in columns)) | |
for i in range(topk): | |
retrieved_examples.append({k: v for k, v in zip(columns, [r[j][0][i] for j in range(len(columns))])}) | |
return retrieved_examples | |
questions = ["What causes the contrails (cirrus aviaticus) behind jets at high altitude? ", | |
"Why does water heated to a room temeperature feel colder than the air around it?"] | |
res_list = query_index(questions[0]) | |
res_list = [res for res in res_list if len(res["text"].split()) > min_snippet_length][:int(topk / 3)] | |
for res in res_list: | |
print("\n") | |
print(res) | |
main() | |