File size: 2,929 Bytes
e35c029
b194803
e35c029
c62ab28
e35c029
 
 
 
ce0a6c0
 
 
 
 
 
 
1417b09
e35c029
c970642
b194803
e35c029
 
 
 
 
 
 
6d5e85a
e35c029
b033d86
e35c029
b033d86
8232dd0
f7c781f
e35c029
 
 
 
 
 
 
 
 
 
 
 
 
b033d86
e35c029
 
6669d02
 
e35c029
6669d02
e35c029
2febbfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import gradio as gr
import spaces
import torch
import torchvision.transforms
import numpy as np
from transformers import AutoModel
from theia.decoding import load_feature_stats, prepare_depth_decoder, prepare_mask_generator, decode_everything


def load_description(fp):
    with open(fp, 'r', encoding='utf-8') as f:
        content = f.read()
    return content


@spaces.GPU(duration=30)
def run_theia(image):
    theia_model = AutoModel.from_pretrained("theaiinstitute/theia-tiny-patch16-224-cddsv", trust_remote_code=True)
    theia_model = theia_model.to('cuda')
    target_model_names = [
        "google/vit-huge-patch14-224-in21k",
        "facebook/dinov2-large",
        "openai/clip-vit-large-patch14",
        "facebook/sam-vit-huge",
        "LiheYoung/depth-anything-large-hf",
    ]
    feature_means, feature_vars = load_feature_stats(target_model_names, stat_file_root="feature_stats")
    
    mask_generator, sam_model = prepare_mask_generator('cuda')
    depth_anything_model_name = "LiheYoung/depth-anything-large-hf"
    depth_anything_decoder, _ = prepare_depth_decoder(depth_anything_model_name, 'cuda')

    image = torchvision.transforms.Resize(size=(224, 224))(image)
    images = [image]
    
    theia_decode_results, gt_decode_results = decode_everything(
        theia_model=theia_model,
        feature_means=feature_means,
        feature_vars=feature_vars,
        images=images,
        mask_generator=mask_generator,
        sam_model=sam_model,
        depth_anything_decoder=depth_anything_decoder,
        pred_iou_thresh=0.5,
        stability_score_thresh=0.7,
        gt=True,
        device='cuda',
    )
    
    theia_decode_results = (255.0 * theia_decode_results[0]).astype(np.uint8)
    gt_decode_results = (255.0 * gt_decode_results[0]).astype(np.uint8)

    return [(theia_decode_results, "Theia Results"), (gt_decode_results, "Ground Truth")]

with gr.Blocks() as demo:
    gr.HTML(load_description("gradio_title.md"))
    gr.Markdown("This space demonstrates decoding Theia-predicted VFM representations to their original teacher model outputs. For DINOv2 we apply the PCA visualization, for SAM we use its decoder to generate segmentation masks (but with SAM's pipeline of prompting), and for Depth-Anything we use its decoder head to do depth prediction.")

    with gr.Row():
        with gr.Column():
            input_image = gr.Image(type="pil", label="Input Image")
            submit_button = gr.Button("Submit")
        
        with gr.Column():
            output_gallery = gr.Gallery(label="Input, DINOv2, SAM, Depth Anything", type="numpy")

    submit_button.click(run_theia, inputs=input_image, outputs=output_gallery)

demo.launch()