LLMTesting / fine_tuning_app.py
thebigoed's picture
updated app
c41146d
""" fine_tuning_app.py
Running a basic chatbot app that can compare base and fine-tuned models from Hugging face.
Note:
- run using streamlit run fine_tuning_app.py
- use free -h then sudo sysctl vm.drop_caches=2 to ensure I have cache space but this can mess up the venv
- may need to run huggingface-cli login in terminal to enable access to model
- Or: https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct/discussions/130 for above
- Hugging face can use up a lot of disc space - cd ~/.cache/huggingface/hub then rm -rf <subdir>
"""
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import time
import torch
from pynvml import * # needs restart of IDE to install, from nvidia-ml-py3
# ---------------------------------------------------------------------------------------
# GENERAL SETUP:
# ---------------------------------------------------------------------------------------
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
hf_token = ""
# model_name = "thebigoed/PreFineLlama-3.1-8B" # this works badly as it does not know chat structure
# model_name = "unsloth/Meta-Llama-3.1-8B-bnb-4bit" # this is what we were fine tuning - also bad without chat instruct
# model_name = "Qwen/Qwen2.5-7B-Instruct" # working well now
# model_name = "meta-llama/Meta-Llama-3-8B-Instruct" # very effective. NB: if using fine grained access token, make sure it can access gated repos
st.title("Fine Tuning Testing")
col1, col2 = st.columns(2)
if 'conversation' not in st.session_state:
st.session_state.conversation = []
user_input = st.text_input("You:", "") # user input
def print_gpu_utilization():
# Used for basic resource monioring.
nvmlInit()
handle = nvmlDeviceGetHandleByIndex(0)
info = nvmlDeviceGetMemoryInfo(handle)
print(f"GPU memory occupied: {info.used//1024**2} MB.")
# ---------------------------------------------------------------------------------------
# MODEL SETUP:
# ---------------------------------------------------------------------------------------
@st.cache_resource(show_spinner=False)
def load_model():
""" Load model from Hugging face."""
print_gpu_utilization()
# see https://huggingface.co/mlabonne/FineLlama-3.1-8B for how to run
# https://huggingface.co/docs/transformers/main/en/chat_templating look into this to decide on how we do templating
success_placeholder = st.empty()
with st.spinner("Loading model... please wait"):
if str(DEVICE) == "cuda:0": # may not need this, need to test on CPU if device map is okay anyway
tokenizer = AutoTokenizer.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
else:
tokenizer = AutoTokenizer.from_pretrained(model_name, torch_dtype="auto")
model = AutoModelForCausalLM.from_pretrained(model_name,
torch_dtype="auto",
device_map="auto"
)
# Not using terminators at the moment
#terminator = tokenizer.eos_token if tokenizer.eos_token else "<|endoftext|>"
success_placeholder.success("Model loaded successfully!", icon="πŸ”₯")
time.sleep(2)
success_placeholder.empty()
print_gpu_utilization()
return model, tokenizer
def generate_response():
""" Query the model. """
success_placeholder = st.empty()
with st.spinner("Thinking..."):
# Tokenising the conversation
if tokenizer.chat_template:
text = tokenizer.apply_chat_template(st.session_state.conversation, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(DEVICE)
else: # base models do not have chat templates
print("Assuming base model.")
model_input = ""
for entry in st.session_state.conversation:
model_input += f"{entry['role']}: {entry['content']}\n"
text = tokenizer(model_input + "assistant: ", return_tensors="pt")["input_ids"].to(DEVICE)
outputs = model.generate(text,
max_new_tokens=512,
)
outputs = tokenizer.batch_decode(outputs[:,text.shape[1]:], skip_special_tokens=True)[0]
print_gpu_utilization()
success_placeholder.success("Response generated!", icon="βœ…")
time.sleep(2)
success_placeholder.empty()
return outputs
# ---------------------------------------------------------------------------------------
# RUNTIME EVENTS:
# ---------------------------------------------------------------------------------------
model, tokenizer = load_model()
# Submit button to send the query
with col1:
if st.button("send"):
if user_input:
st.session_state.conversation.append({"role": "user", "content": user_input})
st.session_state.conversation.append({"role": "assistant", "content": generate_response()})
# Clear button to reset
with col2:
if st.button("clear chat"):
if user_input:
st.session_state.conversation = []
# Display conversation history
for chat in st.session_state.conversation:
if chat['role'] == 'user':
st.write(f"You: {chat['content']}")
else:
st.write(f"Assistant: {chat['content']}")