Spaces:
Sleeping
Sleeping
Oscar Dilley
commited on
Commit
β’
8aec0fe
1
Parent(s):
f6ffde9
version1
Browse files- .gitignore +4 -0
- app.py +68 -2
- requirements.txt +2 -0
.gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
venv/
|
2 |
+
env/
|
3 |
+
.venv/
|
4 |
+
.env/
|
app.py
CHANGED
@@ -1,4 +1,70 @@
|
|
1 |
import streamlit as st
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import time
|
4 |
|
5 |
+
# Streamlit setup
|
6 |
+
st.title("Telco Chat Bot")
|
7 |
+
st.subheader("Smart Internet Lab")
|
8 |
+
st.page_link("https://github.com/Ali-maatouk/Tele-LLMs", label="Tele-LLMs backend", icon="π±")
|
9 |
+
# Add text giving credit
|
10 |
+
col1, col2 = st.columns(2)
|
11 |
+
if 'conversation' not in st.session_state:
|
12 |
+
st.session_state.conversation = []
|
13 |
+
user_input = st.text_input("You:", "") # user input
|
14 |
+
|
15 |
+
|
16 |
+
# Model functions:
|
17 |
+
@st.cache_resource(show_spinner=False)
|
18 |
+
def load_model():
|
19 |
+
""" Load model from Hugging face."""
|
20 |
+
success_placeholder = st.empty()
|
21 |
+
with st.spinner("Loading model... please wait"):
|
22 |
+
model_name = "AliMaatouk/TinyLlama-1.1B-Tele" # Replace with the correct model name
|
23 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, torch_dtype="auto")
|
24 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
25 |
+
success_placeholder.success("Model loaded successfully!", icon="π₯")
|
26 |
+
time.sleep(2)
|
27 |
+
success_placeholder.empty()
|
28 |
+
return model, tokenizer
|
29 |
+
|
30 |
+
def generate_response(user_input):
|
31 |
+
""" Query the model. """
|
32 |
+
success_placeholder = st.empty()
|
33 |
+
with st.spinner("Thinking..."):
|
34 |
+
inputs = tokenizer(user_input, return_tensors="pt")
|
35 |
+
#outputs = model.generate(**inputs, max_length=1000, pad_token_id=tokenizer.eos_token_id)
|
36 |
+
outputs = model.generate(**inputs, max_new_tokens=100)
|
37 |
+
generated_tokens = outputs[0, len(inputs['input_ids'][0]):]
|
38 |
+
success_placeholder.success("Response generated!", icon="β
")
|
39 |
+
time.sleep(2)
|
40 |
+
success_placeholder.empty()
|
41 |
+
return tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
42 |
+
|
43 |
+
# RUNTIME EVENTS:
|
44 |
+
|
45 |
+
# Load model and tokenizer
|
46 |
+
model, tokenizer = load_model()
|
47 |
+
|
48 |
+
# Submit button to send the query
|
49 |
+
with col1:
|
50 |
+
if st.button("send"):
|
51 |
+
if user_input:
|
52 |
+
st.session_state.conversation.append({"role": "user", "content": user_input})
|
53 |
+
# Querying model
|
54 |
+
# Add a loading spinner during model loading
|
55 |
+
response = generate_response(user_input)
|
56 |
+
# Display bot response
|
57 |
+
st.session_state.conversation.append({"role": "bot", "content": response})
|
58 |
+
|
59 |
+
# Clear button to reset
|
60 |
+
with col2:
|
61 |
+
if st.button("clear chat"):
|
62 |
+
if user_input:
|
63 |
+
st.session_state.conversation = []
|
64 |
+
|
65 |
+
# Display conversation history
|
66 |
+
for chat in st.session_state.conversation:
|
67 |
+
if chat['role'] == 'user':
|
68 |
+
st.write(f"You: {chat['content']}")
|
69 |
+
else:
|
70 |
+
st.write(f"Bot: {chat['content']}")
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
transformers
|