Spaces:
Runtime error
Runtime error
File size: 15,304 Bytes
510ee71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
import gc
from math import ceil
from typing import Any
import numpy as np
import torch
import logging
from backend.device import is_openvino_device
from backend.lora import load_lora_weight
from backend.controlnet import (
load_controlnet_adapters,
update_controlnet_arguments,
)
from backend.models.lcmdiffusion_setting import (
DiffusionTask,
LCMDiffusionSetting,
LCMLora,
)
from backend.openvino.pipelines import (
get_ov_image_to_image_pipeline,
get_ov_text_to_image_pipeline,
ov_load_taesd,
)
from backend.pipelines.lcm import (
get_image_to_image_pipeline,
get_lcm_model_pipeline,
load_taesd,
)
from backend.pipelines.lcm_lora import get_lcm_lora_pipeline
from constants import DEVICE
from diffusers import LCMScheduler
from image_ops import resize_pil_image
class LCMTextToImage:
def __init__(
self,
device: str = "cpu",
) -> None:
self.pipeline = None
self.use_openvino = False
self.device = ""
self.previous_model_id = None
self.previous_use_tae_sd = False
self.previous_use_lcm_lora = False
self.previous_ov_model_id = ""
self.previous_safety_checker = False
self.previous_use_openvino = False
self.img_to_img_pipeline = None
self.is_openvino_init = False
self.previous_lora = None
self.task_type = DiffusionTask.text_to_image
self.torch_data_type = (
torch.float32 if is_openvino_device() or DEVICE == "mps" else torch.float16
)
print(f"Torch datatype : {self.torch_data_type}")
def _pipeline_to_device(self):
print(f"Pipeline device : {DEVICE}")
print(f"Pipeline dtype : {self.torch_data_type}")
self.pipeline.to(
torch_device=DEVICE,
torch_dtype=self.torch_data_type,
)
def _add_freeu(self):
pipeline_class = self.pipeline.__class__.__name__
if isinstance(self.pipeline.scheduler, LCMScheduler):
if pipeline_class == "StableDiffusionPipeline":
print("Add FreeU - SD")
self.pipeline.enable_freeu(
s1=0.9,
s2=0.2,
b1=1.2,
b2=1.4,
)
elif pipeline_class == "StableDiffusionXLPipeline":
print("Add FreeU - SDXL")
self.pipeline.enable_freeu(
s1=0.6,
s2=0.4,
b1=1.1,
b2=1.2,
)
def _enable_vae_tiling(self):
self.pipeline.vae.enable_tiling()
def _update_lcm_scheduler_params(self):
if isinstance(self.pipeline.scheduler, LCMScheduler):
self.pipeline.scheduler = LCMScheduler.from_config(
self.pipeline.scheduler.config,
beta_start=0.001,
beta_end=0.01,
)
def init(
self,
device: str = "cpu",
lcm_diffusion_setting: LCMDiffusionSetting = LCMDiffusionSetting(),
) -> None:
self.device = device
self.use_openvino = lcm_diffusion_setting.use_openvino
model_id = lcm_diffusion_setting.lcm_model_id
use_local_model = lcm_diffusion_setting.use_offline_model
use_tiny_auto_encoder = lcm_diffusion_setting.use_tiny_auto_encoder
use_lora = lcm_diffusion_setting.use_lcm_lora
lcm_lora: LCMLora = lcm_diffusion_setting.lcm_lora
ov_model_id = lcm_diffusion_setting.openvino_lcm_model_id
if lcm_diffusion_setting.diffusion_task == DiffusionTask.image_to_image.value:
lcm_diffusion_setting.init_image = resize_pil_image(
lcm_diffusion_setting.init_image,
lcm_diffusion_setting.image_width,
lcm_diffusion_setting.image_height,
)
if (
self.pipeline is None
or self.previous_model_id != model_id
or self.previous_use_tae_sd != use_tiny_auto_encoder
or self.previous_lcm_lora_base_id != lcm_lora.base_model_id
or self.previous_lcm_lora_id != lcm_lora.lcm_lora_id
or self.previous_use_lcm_lora != use_lora
or self.previous_ov_model_id != ov_model_id
or self.previous_safety_checker != lcm_diffusion_setting.use_safety_checker
or self.previous_use_openvino != lcm_diffusion_setting.use_openvino
or (
self.use_openvino
and (
self.previous_task_type != lcm_diffusion_setting.diffusion_task
or self.previous_lora != lcm_diffusion_setting.lora
)
)
or lcm_diffusion_setting.rebuild_pipeline
):
if self.use_openvino and is_openvino_device():
if self.pipeline:
del self.pipeline
self.pipeline = None
gc.collect()
self.is_openvino_init = True
if (
lcm_diffusion_setting.diffusion_task
== DiffusionTask.text_to_image.value
):
print(f"***** Init Text to image (OpenVINO) - {ov_model_id} *****")
self.pipeline = get_ov_text_to_image_pipeline(
ov_model_id,
use_local_model,
)
elif (
lcm_diffusion_setting.diffusion_task
== DiffusionTask.image_to_image.value
):
print(f"***** Image to image (OpenVINO) - {ov_model_id} *****")
self.pipeline = get_ov_image_to_image_pipeline(
ov_model_id,
use_local_model,
)
else:
if self.pipeline:
del self.pipeline
self.pipeline = None
if self.img_to_img_pipeline:
del self.img_to_img_pipeline
self.img_to_img_pipeline = None
controlnet_args = load_controlnet_adapters(lcm_diffusion_setting)
if use_lora:
print(
f"***** Init LCM-LoRA pipeline - {lcm_lora.base_model_id} *****"
)
self.pipeline = get_lcm_lora_pipeline(
lcm_lora.base_model_id,
lcm_lora.lcm_lora_id,
use_local_model,
torch_data_type=self.torch_data_type,
pipeline_args=controlnet_args,
)
else:
print(f"***** Init LCM Model pipeline - {model_id} *****")
self.pipeline = get_lcm_model_pipeline(
model_id,
use_local_model,
controlnet_args,
)
self.img_to_img_pipeline = get_image_to_image_pipeline(self.pipeline)
if use_tiny_auto_encoder:
if self.use_openvino and is_openvino_device():
print("Using Tiny Auto Encoder (OpenVINO)")
ov_load_taesd(
self.pipeline,
use_local_model,
)
else:
print("Using Tiny Auto Encoder")
load_taesd(
self.pipeline,
use_local_model,
self.torch_data_type,
)
load_taesd(
self.img_to_img_pipeline,
use_local_model,
self.torch_data_type,
)
if not self.use_openvino and not is_openvino_device():
self._pipeline_to_device()
if (
lcm_diffusion_setting.diffusion_task
== DiffusionTask.image_to_image.value
and lcm_diffusion_setting.use_openvino
):
self.pipeline.scheduler = LCMScheduler.from_config(
self.pipeline.scheduler.config,
)
else:
self._update_lcm_scheduler_params()
if use_lora:
self._add_freeu()
self.previous_model_id = model_id
self.previous_ov_model_id = ov_model_id
self.previous_use_tae_sd = use_tiny_auto_encoder
self.previous_lcm_lora_base_id = lcm_lora.base_model_id
self.previous_lcm_lora_id = lcm_lora.lcm_lora_id
self.previous_use_lcm_lora = use_lora
self.previous_safety_checker = lcm_diffusion_setting.use_safety_checker
self.previous_use_openvino = lcm_diffusion_setting.use_openvino
self.previous_task_type = lcm_diffusion_setting.diffusion_task
self.previous_lora = lcm_diffusion_setting.lora.model_copy(deep=True)
lcm_diffusion_setting.rebuild_pipeline = False
if (
lcm_diffusion_setting.diffusion_task
== DiffusionTask.text_to_image.value
):
print(f"Pipeline : {self.pipeline}")
elif (
lcm_diffusion_setting.diffusion_task
== DiffusionTask.image_to_image.value
):
if self.use_openvino and is_openvino_device():
print(f"Pipeline : {self.pipeline}")
else:
print(f"Pipeline : {self.img_to_img_pipeline}")
if self.use_openvino:
if lcm_diffusion_setting.lora.enabled:
print("Warning: Lora models not supported on OpenVINO mode")
else:
adapters = self.pipeline.get_active_adapters()
print(f"Active adapters : {adapters}")
def _get_timesteps(self):
time_steps = self.pipeline.scheduler.config.get("timesteps")
time_steps_value = [int(time_steps)] if time_steps else None
return time_steps_value
def generate(
self,
lcm_diffusion_setting: LCMDiffusionSetting,
reshape: bool = False,
) -> Any:
guidance_scale = lcm_diffusion_setting.guidance_scale
img_to_img_inference_steps = lcm_diffusion_setting.inference_steps
check_step_value = int(
lcm_diffusion_setting.inference_steps * lcm_diffusion_setting.strength
)
if (
lcm_diffusion_setting.diffusion_task == DiffusionTask.image_to_image.value
and check_step_value < 1
):
img_to_img_inference_steps = ceil(1 / lcm_diffusion_setting.strength)
print(
f"Strength: {lcm_diffusion_setting.strength},{img_to_img_inference_steps}"
)
if lcm_diffusion_setting.use_seed:
cur_seed = lcm_diffusion_setting.seed
if self.use_openvino:
np.random.seed(cur_seed)
else:
torch.manual_seed(cur_seed)
is_openvino_pipe = lcm_diffusion_setting.use_openvino and is_openvino_device()
if is_openvino_pipe:
print("Using OpenVINO")
if reshape and not self.is_openvino_init:
print("Reshape and compile")
self.pipeline.reshape(
batch_size=-1,
height=lcm_diffusion_setting.image_height,
width=lcm_diffusion_setting.image_width,
num_images_per_prompt=lcm_diffusion_setting.number_of_images,
)
self.pipeline.compile()
if self.is_openvino_init:
self.is_openvino_init = False
if not lcm_diffusion_setting.use_safety_checker:
self.pipeline.safety_checker = None
if (
lcm_diffusion_setting.diffusion_task
== DiffusionTask.image_to_image.value
and not is_openvino_pipe
):
self.img_to_img_pipeline.safety_checker = None
controlnet_args = update_controlnet_arguments(lcm_diffusion_setting)
if lcm_diffusion_setting.use_openvino:
if (
lcm_diffusion_setting.diffusion_task
== DiffusionTask.text_to_image.value
):
result_images = self.pipeline(
prompt=lcm_diffusion_setting.prompt,
negative_prompt=lcm_diffusion_setting.negative_prompt,
num_inference_steps=lcm_diffusion_setting.inference_steps,
guidance_scale=guidance_scale,
width=lcm_diffusion_setting.image_width,
height=lcm_diffusion_setting.image_height,
num_images_per_prompt=lcm_diffusion_setting.number_of_images,
).images
elif (
lcm_diffusion_setting.diffusion_task
== DiffusionTask.image_to_image.value
):
result_images = self.pipeline(
image=lcm_diffusion_setting.init_image,
strength=lcm_diffusion_setting.strength,
prompt=lcm_diffusion_setting.prompt,
negative_prompt=lcm_diffusion_setting.negative_prompt,
num_inference_steps=img_to_img_inference_steps * 3,
guidance_scale=guidance_scale,
num_images_per_prompt=lcm_diffusion_setting.number_of_images,
).images
else:
if (
lcm_diffusion_setting.diffusion_task
== DiffusionTask.text_to_image.value
):
result_images = self.pipeline(
prompt=lcm_diffusion_setting.prompt,
negative_prompt=lcm_diffusion_setting.negative_prompt,
num_inference_steps=lcm_diffusion_setting.inference_steps,
guidance_scale=guidance_scale,
width=lcm_diffusion_setting.image_width,
height=lcm_diffusion_setting.image_height,
num_images_per_prompt=lcm_diffusion_setting.number_of_images,
timesteps=self._get_timesteps(),
**controlnet_args,
).images
elif (
lcm_diffusion_setting.diffusion_task
== DiffusionTask.image_to_image.value
):
result_images = self.img_to_img_pipeline(
image=lcm_diffusion_setting.init_image,
strength=lcm_diffusion_setting.strength,
prompt=lcm_diffusion_setting.prompt,
negative_prompt=lcm_diffusion_setting.negative_prompt,
num_inference_steps=img_to_img_inference_steps,
guidance_scale=guidance_scale,
width=lcm_diffusion_setting.image_width,
height=lcm_diffusion_setting.image_height,
num_images_per_prompt=lcm_diffusion_setting.number_of_images,
**controlnet_args,
).images
return result_images
|