Spaces:
Runtime error
Runtime error
File size: 2,922 Bytes
510ee71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
from constants import LCM_DEFAULT_MODEL
from diffusers import (
DiffusionPipeline,
AutoencoderTiny,
UNet2DConditionModel,
LCMScheduler,
)
import torch
from backend.tiny_decoder import get_tiny_decoder_vae_model
from typing import Any
from diffusers import (
LCMScheduler,
StableDiffusionImg2ImgPipeline,
StableDiffusionXLImg2ImgPipeline,
AutoPipelineForText2Image,
AutoPipelineForImage2Image,
StableDiffusionControlNetPipeline,
)
def _get_lcm_pipeline_from_base_model(
lcm_model_id: str,
base_model_id: str,
use_local_model: bool,
):
pipeline = None
unet = UNet2DConditionModel.from_pretrained(
lcm_model_id,
torch_dtype=torch.float32,
local_files_only=use_local_model,
resume_download=True,
)
pipeline = DiffusionPipeline.from_pretrained(
base_model_id,
unet=unet,
torch_dtype=torch.float32,
local_files_only=use_local_model,
resume_download=True,
)
pipeline.scheduler = LCMScheduler.from_config(pipeline.scheduler.config)
return pipeline
def load_taesd(
pipeline: Any,
use_local_model: bool = False,
torch_data_type: torch.dtype = torch.float32,
):
vae_model = get_tiny_decoder_vae_model(pipeline.__class__.__name__)
pipeline.vae = AutoencoderTiny.from_pretrained(
vae_model,
torch_dtype=torch_data_type,
local_files_only=use_local_model,
)
def get_lcm_model_pipeline(
model_id: str = LCM_DEFAULT_MODEL,
use_local_model: bool = False,
pipeline_args={},
):
pipeline = None
if model_id == "latent-consistency/lcm-sdxl":
pipeline = _get_lcm_pipeline_from_base_model(
model_id,
"stabilityai/stable-diffusion-xl-base-1.0",
use_local_model,
)
elif model_id == "latent-consistency/lcm-ssd-1b":
pipeline = _get_lcm_pipeline_from_base_model(
model_id,
"segmind/SSD-1B",
use_local_model,
)
else:
# pipeline = DiffusionPipeline.from_pretrained(
pipeline = AutoPipelineForText2Image.from_pretrained(
model_id,
local_files_only=use_local_model,
**pipeline_args,
)
return pipeline
def get_image_to_image_pipeline(pipeline: Any) -> Any:
components = pipeline.components
pipeline_class = pipeline.__class__.__name__
if (
pipeline_class == "LatentConsistencyModelPipeline"
or pipeline_class == "StableDiffusionPipeline"
):
return StableDiffusionImg2ImgPipeline(**components)
elif pipeline_class == "StableDiffusionControlNetPipeline":
return AutoPipelineForImage2Image.from_pipe(pipeline)
elif pipeline_class == "StableDiffusionXLPipeline":
return StableDiffusionXLImg2ImgPipeline(**components)
else:
raise Exception(f"Unknown pipeline {pipeline_class}")
|