Spaces:
Runtime error
Runtime error
File size: 6,671 Bytes
510ee71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import gradio as gr
from PIL import Image
from backend.lora import get_lora_models
from state import get_settings
from backend.models.lcmdiffusion_setting import ControlNetSetting
from backend.annotators.image_control_factory import ImageControlFactory
_controlnet_models_map = None
_controlnet_enabled = False
_adapter_path = None
app_settings = get_settings()
def on_user_input(
enable: bool,
adapter_name: str,
conditioning_scale: float,
control_image: Image,
preprocessor: str,
):
if not isinstance(adapter_name, str):
gr.Warning("Please select a valid ControlNet model")
return gr.Checkbox(value=False)
settings = app_settings.settings.lcm_diffusion_setting
if settings.controlnet is None:
settings.controlnet = ControlNetSetting()
if enable and (adapter_name is None or adapter_name == ""):
gr.Warning("Please select a valid ControlNet adapter")
return gr.Checkbox(value=False)
elif enable and not control_image:
gr.Warning("Please provide a ControlNet control image")
return gr.Checkbox(value=False)
if control_image is None:
return gr.Checkbox(value=enable)
if preprocessor == "None":
processed_control_image = control_image
else:
image_control_factory = ImageControlFactory()
control = image_control_factory.create_control(preprocessor)
processed_control_image = control.get_control_image(control_image)
if not enable:
settings.controlnet.enabled = False
else:
settings.controlnet.enabled = True
settings.controlnet.adapter_path = _controlnet_models_map[adapter_name]
settings.controlnet.conditioning_scale = float(conditioning_scale)
settings.controlnet._control_image = processed_control_image
# This code can be improved; currently, if the user clicks the
# "Enable ControlNet" checkbox or changes the currently selected
# ControlNet model, it will trigger a pipeline rebuild even if, in
# the end, the user leaves the same ControlNet settings
global _controlnet_enabled
global _adapter_path
if settings.controlnet.enabled != _controlnet_enabled or (
settings.controlnet.enabled
and settings.controlnet.adapter_path != _adapter_path
):
settings.rebuild_pipeline = True
_controlnet_enabled = settings.controlnet.enabled
_adapter_path = settings.controlnet.adapter_path
return gr.Checkbox(value=enable)
def on_change_conditioning_scale(cond_scale):
print(cond_scale)
app_settings.settings.lcm_diffusion_setting.controlnet.conditioning_scale = (
cond_scale
)
def get_controlnet_ui() -> None:
with gr.Blocks() as ui:
gr.HTML(
'Download ControlNet v1.1 model from <a href="https://huggingface.co/comfyanonymous/ControlNet-v1-1_fp16_safetensors/tree/main">ControlNet v1.1 </a> (723 MB files) and place it in <b>controlnet_models</b> folder,restart the app'
)
with gr.Row():
with gr.Column():
with gr.Row():
global _controlnet_models_map
_controlnet_models_map = get_lora_models(
app_settings.settings.lcm_diffusion_setting.dirs["controlnet"]
)
controlnet_models = list(_controlnet_models_map.keys())
default_model = (
controlnet_models[0] if len(controlnet_models) else None
)
enabled_checkbox = gr.Checkbox(
label="Enable ControlNet",
info="Enable ControlNet",
show_label=True,
)
model_dropdown = gr.Dropdown(
_controlnet_models_map.keys(),
label="ControlNet model",
info="ControlNet model to load (.safetensors format)",
value=default_model,
interactive=True,
)
conditioning_scale_slider = gr.Slider(
0.0,
1.0,
value=0.5,
step=0.05,
label="ControlNet conditioning scale",
interactive=True,
)
control_image = gr.Image(
label="Control image",
type="pil",
)
preprocessor_radio = gr.Radio(
[
"Canny",
"Depth",
"LineArt",
"MLSD",
"NormalBAE",
"Pose",
"SoftEdge",
"Shuffle",
"None",
],
label="Preprocessor",
info="Select the preprocessor for the control image",
value="Canny",
interactive=True,
)
enabled_checkbox.input(
fn=on_user_input,
inputs=[
enabled_checkbox,
model_dropdown,
conditioning_scale_slider,
control_image,
preprocessor_radio,
],
outputs=[enabled_checkbox],
)
model_dropdown.input(
fn=on_user_input,
inputs=[
enabled_checkbox,
model_dropdown,
conditioning_scale_slider,
control_image,
preprocessor_radio,
],
outputs=[enabled_checkbox],
)
conditioning_scale_slider.input(
fn=on_user_input,
inputs=[
enabled_checkbox,
model_dropdown,
conditioning_scale_slider,
control_image,
preprocessor_radio,
],
outputs=[enabled_checkbox],
)
control_image.change(
fn=on_user_input,
inputs=[
enabled_checkbox,
model_dropdown,
conditioning_scale_slider,
control_image,
preprocessor_radio,
],
outputs=[enabled_checkbox],
)
preprocessor_radio.change(
fn=on_user_input,
inputs=[
enabled_checkbox,
model_dropdown,
conditioning_scale_slider,
control_image,
preprocessor_radio,
],
outputs=[enabled_checkbox],
)
conditioning_scale_slider.change(
on_change_conditioning_scale, conditioning_scale_slider
)
|