fastSD / backend /models /lcmdiffusion_setting.py
thejagstudio's picture
Upload 61 files
510ee71 verified
from enum import Enum
from PIL import Image
from typing import Any, Optional, Union
from constants import LCM_DEFAULT_MODEL, LCM_DEFAULT_MODEL_OPENVINO
from paths import FastStableDiffusionPaths
from pydantic import BaseModel
class LCMLora(BaseModel):
base_model_id: str = "Lykon/dreamshaper-8"
lcm_lora_id: str = "latent-consistency/lcm-lora-sdv1-5"
class DiffusionTask(str, Enum):
"""Diffusion task types"""
text_to_image = "text_to_image"
image_to_image = "image_to_image"
class Lora(BaseModel):
models_dir: str = FastStableDiffusionPaths.get_lora_models_path()
path: Optional[Any] = None
weight: Optional[float] = 0.5
fuse: bool = True
enabled: bool = False
class ControlNetSetting(BaseModel):
adapter_path: Optional[str] = None # ControlNet adapter path
conditioning_scale: float = 0.5
enabled: bool = False
_control_image: Image = None # Control image, PIL image
class LCMDiffusionSetting(BaseModel):
lcm_model_id: str = LCM_DEFAULT_MODEL
openvino_lcm_model_id: str = LCM_DEFAULT_MODEL_OPENVINO
use_offline_model: bool = False
use_lcm_lora: bool = False
lcm_lora: Optional[LCMLora] = LCMLora()
use_tiny_auto_encoder: bool = False
use_openvino: bool = False
prompt: str = ""
negative_prompt: str = ""
init_image: Any = None
strength: Optional[float] = 0.6
image_height: Optional[int] = 512
image_width: Optional[int] = 512
inference_steps: Optional[int] = 1
guidance_scale: Optional[float] = 1
number_of_images: Optional[int] = 1
seed: Optional[int] = 123123
use_seed: bool = False
use_safety_checker: bool = False
diffusion_task: str = DiffusionTask.text_to_image.value
lora: Optional[Lora] = Lora()
controlnet: Optional[Union[ControlNetSetting, list[ControlNetSetting]]] = None
dirs: dict = {
"controlnet": FastStableDiffusionPaths.get_controlnet_models_path(),
"lora": FastStableDiffusionPaths.get_lora_models_path(),
}
rebuild_pipeline: bool = False