Spaces:
Runtime error
Runtime error
File size: 39,568 Bytes
b7e7dbc 1141a35 b7e7dbc b5ae5fa 1141a35 b7e7dbc e8912c6 1141a35 59e3412 b7e7dbc f55e82b 2a19f14 b7e7dbc 7380dca 1141a35 b7e7dbc f61d0df b7e7dbc f61d0df b5ae5fa f61d0df b7e7dbc f61d0df b7e7dbc f61d0df b7e7dbc f61d0df b5ae5fa f61d0df b5ae5fa f61d0df b7e7dbc f61d0df 96ca2bb f61d0df f72bcf1 b7e7dbc 1141a35 b7e7dbc 81a383d 96ca2bb b7e7dbc 96ca2bb b7e7dbc 1141a35 81a383d 772efae a682438 1141a35 626f015 1141a35 626f015 1141a35 b7e7dbc 5a8ad8e b7e7dbc 5a8ad8e b7e7dbc 5cd9cad b7e7dbc 56b77cc b7e7dbc f55e82b b7e7dbc ad3fae5 f55e82b ad3fae5 34e6e0e b7e7dbc f55e82b b7e7dbc f55e82b b7e7dbc ad3fae5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 |
import io
import os
import ast
import json
import base64
import spaces
import requests
import numpy as np
import gradio as gr
from PIL import Image
from io import BytesIO
import face_recognition
from turtle import title
from openai import OpenAI
from collections import defaultdict
from typing import List, Optional, Set, Dict, Any
from transformers import pipeline
import urllib.request
from transformers import YolosImageProcessor, YolosForObjectDetection
import torch
import matplotlib.pyplot as plt
from torchvision.transforms import ToTensor, ToPILImage
client = OpenAI()
pipe = pipeline("zero-shot-image-classification", model="patrickjohncyh/fashion-clip")
color_file_path = 'color_config.json'
attributes_file_path = 'attributes_config.json'
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
# Open and read the COLOR JSON file
with open(color_file_path, 'r') as file:
color_data = json.load(file)
# Open and read the ATTRIBUTES JSON file
with open(attributes_file_path, 'r') as file:
attributes_data = json.load(file)
COLOURS_DICT = color_data['color_mapping']
ATTRIBUTES_DICT = attributes_data['attribute_mapping']
DETAILS_THRESHOLD = 0.4 # This is how high the total score of an additional detail attribute should be for it to be included (number scales up linearly with more images)
OPENAI_USER_PROMPT = "I have a product called 'Round Neck Knitted Ribbed Crop Top with a Neck Detail'. The description reads: 'Introducing the Round Neck Knitted Ribbed Crop Top with a Neck Detail. This sleeveless top is a must-have addition to your wardrobe. Its round neck and ribbed design give it a modern and stylish look, while the neck detail adds a unique touch. Made from high-quality materials, this crop top is comfortable to wear all day long. The solid white color makes it easy to pair with any outfit, making it a versatile piece for any occasion. Whether you're dressing up for a night out or keeping it casual, this crop top is sure to become one of your favorite go-to staples. Upgrade your style with this trendy and chic top today!'. Arabic naming: 'بلوزة قصيرة محبوكة ومضلعة بياقة دائرية وتفاصيل رقبة'. Arabic description: 'نقدم لك بلوزة قصيرة محبوكة ومضلعة برقبة دائرية مع تفاصيل الرقبة. يعد هذا القميص بلا أكمام إضافة لا غنى عنها لخزانة ملابسك. تمنحه رقبته المستديرة وتصميمه المضلع مظهرًا عصريًا وأنيقًا، بينما تضيف تفاصيل الرقبة لمسة فريدة. مصنوع من مواد عالية الجودة، هذا القميص القصير مريح للارتداء طوال اليوم. اللون الأبيض الصلب يجعل من السهل ارتداؤه مع أي ملابس، مما يجعله قطعة متعددة الاستخدامات لأي مناسبة. سواء كنت ترتدي ملابس ليلية أو تبقيها غير رسمية، فمن المؤكد أن هذه السترة القصيرة ستصبح واحدة من القطع الأساسية المفضلة لديك. قم بترقية أسلوبك مع هذا القميص العصري والأنيق اليوم!'\n The attributes are:\n\t• Category: 'top > croptop'\n\t• Material: 'polyamide'\n\t• Target Audience: women\n\t• Fabric Style: Knitted\n\t• Pattern: Solid\n\t• Colar Type: Round Neck\n\t• Sleeve Length: Sleeveless\n\t• Details: Ribbed Neck Detail \n\t• Tags: 'neutral, staples, casual, springsummer, bestseller, summer_light_palette, coastal_charm, allnewin' (do not use any seasonal tags or other discount info nothing with '_' or color)\n \n\nI have a product called 'Crew Neck Crop Top with a V-Shaped Front'. The description reads: 'Step up your casual style with this Crew Neck Crop Top with a V-Shaped Front. Crafted from high-quality materials, this sleeveless top features a flattering v-shaped front design that adds a touch of sophistication to any outfit. The Sacramento Green color adds a pop of freshness and pairs perfectly with neutral tones. Whether you're lounging at home or running errands, this crop top is a staple in your wardrobe. Its versatile design makes it easy to dress up or down for any occasion. Elevate your loungewear game and add this Crew Neck Crop Top to your collection today.'. Arabic naming: 'بلوزة قصيرة بياقة دائرية ومقدمة على شكل حرف V'. Arabic description: 'ارتقي بأسلوبك الكاجوال مع هذا القميص القصير ذو الرقبة الدائرية والمقدمة على شكل حرف V. مصنوع من مواد عالية الجودة، يتميز هذا القميص بدون أكمام بتصميم أمامي جذاب على شكل حرف V يضيف لمسة من الرقي إلى أي ملابس. يضيف لون Sacramento Green لمسة من النضارة ويمتزج بشكل مثالي مع الألوان المحايدة. سواء كنت تسترخي في المنزل أو تقوم بمهمات، فإن هذا القميص القصير هو قطعة أساسية في خزانة ملابسك. تصميمه متعدد الاستخدامات يجعل من السهل ارتداؤه لأعلى أو لأسفل في أي مناسبة. ارفع مستوى ملابسك المريحة وأضف هذا القميص ذو الرقبة الدائرية إلى مجموعتك اليوم.'\n The attributes are:\n\t• Category: 'top > croptop'\n\t• Material: 'cotton, polyester'\n\t• Target Audience: women\n\t• Fabric Style: Woven\n\t• Pattern: Solid\n\t• Colar Type: Crew Neck\n\t• Sleeve Length: Sleeveless\n\t• Details: V-Shaped Front \n\t• Tags: 'neutral, casual, staples, loungewear, bestseller' (do not use any seasonal tags or other discount info nothing with '_' or color)\n \n\nI have a product called 'Corduroy Polo Collar Buttoned Pocket Jacket'. The description reads: 'Step up your fashion game with this Corduroy Polo Collar Buttoned Pocket Jacket. Made from high-quality corduroy fabric, this jacket is both stylish and comfortable. The unique polo collar adds a touch of sophistication, while the buttoned pockets provide a practical yet fashionable twist. Whether you're heading to a casual outing or a night on the town, this jacket is sure to turn heads. Its versatile design makes it easy to pair with any outfit, giving you endless options for creating trendy looks. Upgrade your wardrobe with this Hiccup fashion statement and be the envy of everyone around you.'. Arabic naming: 'سترة سروال قصير بياقة بولو وجيب بأزرار'. Arabic description: 'ارتقِ بأسلوبك في عالم الموضة مع سترة الجيب ذات الأزرار بياقة بولو من سروال قصير. مصنوع من قماش كوردروي عالي الجودة، هذا الجاكيت أنيق ومريح. تضيف ياقة البولو الفريدة لمسة من الرقي، بينما توفر الجيوب ذات الأزرار لمسة عملية وعصرية. سواء كنت متجهًا إلى نزهة غير رسمية أو ليلة في المدينة، فمن المؤكد أن هذه السترة ستلفت الأنظار. تصميمه متعدد الاستخدامات يجعل من السهل ارتداؤه مع أي ملابس، مما يمنحك خيارات لا حصر لها للحصول على إطلالات عصرية. قم بترقية خزانة ملابسك مع هذا التصميم الأنيق من Hiccup وكن موضع حسد الجميع من حولك.'\n The attributes are:\n\t• Category: 'outwear > coatjacket'\n\t• Material: 'polyester'\n\t• Target Audience: women\n\t• Fabric Style: Corduroy\n\t• Pattern: Solid\n\t• Colar Type: Polo Collar\n\t• Sleeve Length: Long Sleeve\n\t• Details: Buttoned, Pocket\n\t• Tags: 'autumn, black, cosy, onsale, discount55_2403' (do not use any seasonal tags or other discount info nothing with '_' or color)\n \n\nI have a product called 'High Waist Skirt with a Belt'. The description reads: 'Step into style with our High Waist Skirt with a Belt in Brown. This chic and versatile skirt is designed to flatter your figure and elevate your fashion game. The high waistline accentuates your curves while the belt adds a touch of sophistication. Made from a premium blend of fabrics, this skirt is comfortable and durable, ensuring that it will become a staple in your wardrobe for years to come. Whether you're dressing up for a special occasion or keeping it casual for everyday wear, this High Waist Skirt with a Belt in Brown is the perfect choice. Embrace timeless elegance and make a statement with this must-have piece.'. Arabic naming: 'تنورة عالية الخصر مع حزام'. Arabic description: 'نقدم لك تنورة عالية الخصر مع حزام، وهي إضافة لا بد منها لأي خزانة ملابس مواكبة للموضة. ارتقي بأسلوبك مع هذه القطعة الأنيقة والمتعددة الاستخدامات التي تجمع بين الرقي والراحة بسهولة. يبرز تصميم الخصر العالي منحنياتك، بينما يشد الحزام المتضمن خصرك للحصول على مظهر جذاب. مصنوعة من قماش عالي الجودة، هذه التنورة تنسدل بشكل جميل ومثالية للمناسبات غير الرسمية والرسمية. ارتديه مع بلوزة وحذاء بكعب لإطلالة أنيقة، أو ارتديه مع تي شيرت وحذاء رياضي لإطلالة أكثر استرخاءً. تمتعي بالأناقة الخالدة مع تنورتنا ذات الخصر العالي مع الحزام واخرجي بأناقة.'\n The attributes are:\n\t• Category: 'bottom > skirt'\n\t• Material: 'polyester'\n\t• Target Audience: women\n\t• Fabric Style: Woven\n\t• Waist: High Waist\n\t• Style: Mini\n\t• Details: Belt\n\t• Tags: 'black, springsummer, allnewin, neutral, tailoring' (do not use any seasonal tags or other discount info nothing with '_' or color)\n \n\nI have a product called 'Knitted Crew Neck Crop Top'. The description reads: 'Introducing our Knitted Crew Neck Crop Top, the perfect addition to your wardrobe. Made from high-quality knitted fabric, this crop top offers both style and comfort. The crew neck design adds a touch of sophistication, while the cropped length adds a modern twist. Whether you pair it with high-waisted jeans for a casual look or dress it up with a skirt for a night out, this crop top is versatile and effortlessly chic. The soft fabric feels luxurious against the skin, making it a pleasure to wear all day long. Upgrade your style game with our Knitted Crew Neck Crop Top and turn heads wherever you go.'. Arabic naming: 'محبوك طاقم الرقبة المحاصيل الأعلى'. \nArabic description: 'نقدم لك القميص القصير ذو الرقبة الدائرية المحبوك، الإضافة المثالية لخزانة ملابسك. مصنوع من قماش محبوك عالي الجودة، هذا القميص القصير يوفر الأناقة والراحة. يضيف تصميم الرقبة الدائرية لمسة من الرقي، بينما يضيف الطول القصير لمسة عصرية. سواء كنت ترتديه مع بنطال جينز عالي الخصر لمظهر غير رسمي أو ترتديه مع تنورة لقضاء ليلة في الخارج، فإن هذا القميص القصير متعدد الاستخدامات وأنيق دون عناء. يعطي النسيج الناعم ملمسًا فاخرًا على البشرة، مما يجعل ارتداؤه ممتعًا طوال اليوم. قم بترقية أسلوبك في الأناقة مع القميص المحبوك ذو الرقبة الدائرية وجذب الأنظار أينما ذهبت.'\n The attributes are:\n\t• Category: 'top > croptop'\n\t• Material: 'viscose, polyamide'\n\t• Target Audience: women\n\t• Fabric Style: Knitted\n\t• Pattern: Solid\n\t• Colar Type: Crew Neck\n\t• Sleeve Length: Sleeveless\n\t• Tags: 'autumn, neutral' (do not use any seasonal tags or other discount info nothing with '_' or color)\n "
def shot(input, category, level):
output_dict = {}
if level == 'variant':
openai_parsed_response = get_openAI_tags(ast.literal_eval(str(input)))
face_embeddings = get_face_embeddings(ast.literal_eval(str(input)))
cropped_images, product_crops = get_cropped_images(ast.literal_eval(str(input)), category)
print(product_crops)
if len(product_crops) == 0:
print("No product crops found. Using image urls instead.")
subColour, mainColour, score = get_colour(ast.literal_eval(str(input)), category)
else:
subColour, mainColour, score = get_colour(product_crops, category)
# Ensure all outputs are JSON serializable
output_dict['colors'] = {
"main": mainColour,
"sub": subColour,
"score": score
}
output_dict['image_mapping'] = openai_parsed_response
output_dict['face_embeddings'] = face_embeddings
output_dict['cropped_images'] = cropped_images
if level == 'product':
common_result = get_predicted_attributes(ast.literal_eval(str(input)), category)
output_dict['attributes'] = common_result
output_dict['subcategory'] = category
print(common_result)
output_dict['description'] = get_product_description(category=category, attributes=common_result)
# # Convert the dictionary to a JSON-serializable format
# try:
# serialized_output = json.dumps(output_dict)
# except TypeError as e:
# print(f"Serialization Error: {e}")
# return {"error": "Serialization failed"}
return json.dumps(output_dict)
# @spaces.GPU
# def get_colour(image_urls, category):
# colourLabels = list(COLOURS_DICT.keys())
# for i in range(len(colourLabels)):
# colourLabels[i] = colourLabels[i] + " clothing: " + category
# responses = pipe(image_urls, candidate_labels=colourLabels)
# # Get the most common colour
# mainColour = responses[0][0]['label'].split(" clothing:")[0]
# if mainColour not in COLOURS_DICT:
# return None, None, None
# # Add category to the end of each label
# labels = COLOURS_DICT[mainColour]
# for i in range(len(labels)):
# labels[i] = labels[i] + " clothing: " + category
# # Run pipeline in one go
# responses = pipe(image_urls, candidate_labels=labels)
# subColour = responses[0][0]['label'].split(" clothing:")[0]
# return subColour, mainColour, responses[0][0]['score']
# @spaces.GPU
# def get_colour(image_urls, category):
# # Prepare color labels
# colourLabels = [f"{color} clothing: {category}" for color in COLOURS_DICT.keys()]
# print("Colour Labels:", colourLabels) # Debug: Print colour labels
# print("Image URLs:", image_urls) # Debug: Print image URLs
# # Split labels into two batches
# mid_index = len(colourLabels) // 2
# first_batch = colourLabels[:mid_index]
# second_batch = colourLabels[mid_index:]
# # Process the first batch
# responses_first_batch = pipe(image_urls, candidate_labels=first_batch)
# # Get the top 3 from the first batch
# top3_first_batch = sorted(responses_first_batch[0], key=lambda x: x['score'], reverse=True)[:3]
# # Process the second batch
# responses_second_batch = pipe(image_urls, candidate_labels=second_batch)
# # Get the top 3 from the second batch
# top3_second_batch = sorted(responses_second_batch[0], key=lambda x: x['score'], reverse=True)[:3]
# # Combine the top 3 from each batch
# combined_top6 = top3_first_batch + top3_second_batch
# # Get the final top 3 from the combined list
# final_top3 = sorted(combined_top6, key=lambda x: x['score'], reverse=True)[:3]
# mainColour = final_top3[0]['label'].split(" clothing:")[0]
# if mainColour not in COLOURS_DICT:
# return None, None, None
# # Get sub-colors for the main color
# labels = [f"{label} clothing: {category}" for label in COLOURS_DICT[mainColour]]
# print("Labels for pipe:", labels) # Debug: Confirm labels are correct
# responses = pipe(image_urls, candidate_labels=labels)
# subColour = responses[0][0]['label'].split(" clothing:")[0]
# return subColour, mainColour, responses[0][0]['score']
@spaces.GPU
def get_colour(image_urls, category):
colour_labels = [f"{colour}, clothing: {category}" for colour in COLOURS_DICT.keys()]
responses = pipe(image_urls, candidate_labels=colour_labels)
main_colour, main_score = get_most_common_label(responses)
if main_colour not in COLOURS_DICT:
return None, None, None
score = [main_score]
labels = COLOURS_DICT[main_colour]
if main_colour == "multicolor":
labels = [label for key, values in COLOURS_DICT.items() if key != main_colour for label in values]
labels = [f"{label}, clothing: {category}" for label in labels]
responses = pipe(image_urls, candidate_labels=labels)
most_common, sub_score = get_most_common_label(responses)
sub_colours = [most_common]
score.append(sub_score)
if main_colour == "multicolor":
sub_key = next(key for key, values in COLOURS_DICT.items() if most_common in values)
labels = [label for key, values in COLOURS_DICT.items() if key not in {main_colour, sub_key} for label in values]
labels = [f"{label}, clothing: {category}" for label in labels]
responses = pipe(image_urls, candidate_labels=labels)
most_common, tertiary_score = get_most_common_label(responses)
sub_colours.append(most_common)
score.append(tertiary_score)
return sub_colours, main_colour, score
# Function for get_predicted_attributes and get_colour
def get_most_common_label(responses):
feature_scores = defaultdict(float)
for response in responses:
label, score = response[0]['label'].split(", clothing:")[0], response[0]['score']
feature_scores[label] += score
max_label = max(feature_scores, key=feature_scores.get)
return max_label, feature_scores[max_label] / len(responses)
@spaces.GPU
def get_predicted_attributes(image_urls, category):
# Assuming ATTRIBUTES_DICT and pipe are defined outside this function
attributes = list(ATTRIBUTES_DICT.get(category, {}).keys())
# Mapping of possible values per attribute
common_result = []
for attribute in attributes:
values = ATTRIBUTES_DICT.get(category, {}).get(attribute, [])
if len(values) == 0:
continue
# Adjust labels for the pipeline
attribute = attribute.replace("colartype", "collar").replace("sleevelength", "sleeve length").replace("fabricstyle", "fabric")
values = [f"{attribute}: {value.strip()}, clothing: {category}" for value in values]
# Get the predicted values for the attribute
responses = pipe(image_urls, candidate_labels=values)
most_common, score = get_most_common_label(responses)
common_result.append(most_common)
if attribute == "details":
# Process additional details labels if the score is higher than 0.8
for _ in range(2):
values = [value for value in values if value != f"{most_common}, clothing: {category}"]
responses = pipe(image_urls, candidate_labels=values)
most_common, score = get_most_common_label(responses)
if score > DETAILS_THRESHOLD * len(image_urls):
common_result.append(most_common)
# Convert common_result into a dictionary
final = {}
details_count = 0
for result in common_result:
result = result.replace("collar", "colartype").replace("sleeve length", "sleevelength").replace("fabric", "fabricstyle")
key, value = result.split(": ")
if key == "details":
if details_count > 0:
key += str(details_count)
details_count += 1
final[key] = value.lower()
return final
def generate_prompt(category: Optional[str], tags: Optional[Set[str]],
materials: Optional[List[Dict[str, int]]], attributes: Optional[List[Dict[str, str]]]) -> str:
print(attributes)
for attr in attributes:
print(attr)
print(attributes[attr])
formatted_attributes = [f"{attr}: {attributes[attr]}" for attr in attributes] if attributes else []
formatted_string = "\\n".join(formatted_attributes) if formatted_attributes else "No attributes provided."
processed_category = category.replace("women-", "").replace("-", " > ") if category else None
material_keys = ", ".join([str(material['key']) for material in materials]) if materials else None
processed_tags = ", ".join(tags) if tags else None
return (
f"I have a new product.\\nThe attributes are: Category: {processed_category}\\n"
f"Material: {material_keys}\\n{formatted_string}\\n"
f"Tags: {processed_tags} (do not use any seasonal tags or other discount info nothing with '_' or color)\\n"
"Print the output as a json object no extra text, keys are name_en, name_ar, summary_en, summary_ar"
).strip()
def send_request_to_openai(prompt: str) -> Optional[Dict[str, Any]]:
messages = [
{"role": "system", "content": "You are a labelling assistant, you will help create product metadata for my online e-commerce platform. Your tasks will be to return product names and product descriptions. You will be given some product attributes and/or metadata guideline outputs and are expected to follow the sample output to generate new outputs.\n\nYou will be asked to generate product names and descriptions in both english and arabic."},
{"role": "user", "content": "Hello, I need help creating product metadata for new apparel items. I will provide examples, I want you to understand the current structure and setup. You are expected to match the current tone of voice and overall information."},
{"role": "assistant", "content": "Sure, I'd be happy to help! Please provide the attributes and any existing product names you'd like me to consider"},
{"role": "user", "content": OPENAI_USER_PROMPT},
{"role": "assistant", "content": "This was very helpful, I have taken note of the overall data inputs and expected product name and description outputs. Please provide the attributes for the newly listed product so I can generate the name and description for you."},
{"role": "user", "content": prompt}
]
try:
openai_response = client.chat.completions.create(
model="gpt-3.5-turbo-16k",
messages=messages,
temperature=1.0,
max_tokens=512,
top_p=1.0,
frequency_penalty=0.0,
presence_penalty=0.0
)
json_string = openai_response.choices[0].message.content
parsed_response = json.loads(json_string)
print(f"English name: {parsed_response['name_en']}")
print(f"Arabic name: {parsed_response['name_ar']}")
print(f"English description: {parsed_response['summary_en']}")
print(f"Arabic description: {parsed_response['summary_ar']}")
return parsed_response
except openai.error.OpenAIError as e:
print(f"Failed to fetch details: {e}")
return None
def get_product_description(category: Optional[str] = None, tags: Optional[Set[str]] = None,
attributes: Optional[List[Dict[str, str]]] = None, materials: Optional[List[Dict[str, int]]] = None) -> Optional[Dict[str, Any]]:
prompt = generate_prompt(category, tags, materials, attributes)
return send_request_to_openai(prompt)
# Example usage:
# response = get_product_description(api_key, category="women-shirts", tags={"summer", "casual"}, attributes=[{"key": "color", "value": "blue"}], materials=[{"key": "cotton", "value": 100}])
def get_openAI_tags(image_urls):
# Create list containing JSONs of each image URL
imageList = []
for image in image_urls:
imageList.append({"type": "image_url", "image_url": {"url": image}})
try:
openai_response = client.chat.completions.create(
model="gpt-4o",
messages=[
{
"role": "system",
"content": [
{
"type": "text",
"text": "You're a tagging assistant, you will help label and tag product pictures for my online e-commerce platform. Your tasks will be to return which angle the product images were taken from. You will have to choose from 'full-body', 'half-body', 'side', 'back', or 'zoomed' angles. You should label each of the images with one of these labels depending on which you think fits best (ideally, every label should be used at least once, but only if there are 5 or more images), and should respond with an unformatted dictionary where the key is a string representation of the url index of the url and the value is the assigned label."
}
]
},
{
"role": "user",
"content": imageList
},
],
temperature=1,
max_tokens=500,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
response = json.loads(openai_response.choices[0].message.content)
return response
except Exception as e:
print(f"OpenAI API Error: {e}")
return {}
@spaces.GPU
def get_face_embeddings(image_urls):
# Initialize a dictionary to store the face encodings or errors
results = {}
# Loop through each image URL
for index, url in enumerate(image_urls):
try:
# Try to download the image from the URL
response = requests.get(url)
# Raise an exception if the response is not successful
response.raise_for_status()
# Load the image using face_recognition
image = face_recognition.load_image_file(BytesIO(response.content))
# Get the face encodings for all faces in the image
face_encodings = face_recognition.face_encodings(image)
# If no faces are detected, store an empty list
if not face_encodings:
results[str(index)] = []
else:
# Otherwise, store the first face encoding as a list
results[str(index)] = face_encodings[0].tolist()
except Exception as e:
# If any error occurs during the download or processing, store the error message
print(f"Error processing image: {str(e)}")
return results
# new
ACCURACY_THRESHOLD = 0.86
def open_image_from_url(url):
# Fetch the image from the URL
response = requests.get(url, stream=True)
response.raise_for_status() # Check if the request was successful
# Open the image using PIL
image = Image.open(BytesIO(response.content))
return image
# Add the main data to the session state
main = [['Product Id', 'Sku', 'Color', 'Images', 'Status', 'Category', 'Text']]
# This is the order of the categories list. NO NOT CHANGE. Just for visualization purposes
cats = ['shirt, blouse', 'top, t-shirt, sweatshirt', 'sweater', 'cardigan', 'jacket', 'vest', 'pants', 'shorts', 'skirt', 'coat', 'dress', 'jumpsuit', 'cape', 'glasses', 'hat', 'headband, head covering, hair accessory', 'tie', 'glove', 'watch', 'belt', 'leg warmer', 'tights, stockings', 'sock', 'shoe', 'bag, wallet', 'scarf', 'umbrella', 'hood', 'collar', 'lapel', 'epaulette', 'sleeve', 'pocket', 'neckline', 'buckle', 'zipper', 'applique', 'bead', 'bow', 'flower', 'fringe', 'ribbon', 'rivet', 'ruffle', 'sequin', 'tassel']
filter = ['dress', 'jumpsuit', 'cape', 'glasses', 'hat', 'headband, head covering, hair accessory', 'tie', 'glove', 'watch', 'belt', 'leg warmer', 'tights, stockings', 'sock', 'shoe', 'scarf', 'umbrella', 'hood', 'collar', 'lapel', 'epaulette', 'sleeve', 'pocket', 'neckline', 'buckle', 'zipper', 'applique', 'bead', 'bow', 'flower', 'fringe', 'ribbon', 'rivet', 'ruffle', 'sequin', 'tassel']
# 0 for full body, 1 for upper body, 2 for lower body, 3 for over body (jacket, coat, etc), 4 for accessories
yolo_mapping = {
'shirt, blouse': 3,
'top, t-shirt, sweatshirt' : 1,
'sweater': 1,
'cardigan': 1,
'jacket': 3,
'vest': 1,
'pants': 2,
'shorts': 2,
'skirt': 2,
'coat': 3,
'dress': 0,
'jumpsuit': 0,
'bag, wallet': 4
}
# First line full body, second line upper body, third line lower body, fourth line over body, fifth line accessories
label_mapping = [
['women-dress-mini', 'women-dress-dress', 'women-dress-maxi', 'women-dress-midi', 'women-playsuitsjumpsuits-playsuit', 'women-playsuitsjumpsuits-jumpsuit', 'women-coords-coords', 'women-swimwear-onepieces', 'women-swimwear-bikinisets'],
['women-sweatersknits-cardigan', 'women-top-waistcoat', 'women-top-blouse', 'women-sweatersknits-blouse', 'women-sweatersknits-sweater', 'women-top-top', 'women-loungewear-hoodie', 'women-top-camistanks', 'women-top-tshirt', 'women-top-croptop', 'women-loungewear-sweatshirt', 'women-top-body'],
['women-loungewear-joggers', 'women-bottom-trousers', 'women-bottom-leggings', 'women-bottom-jeans', 'women-bottom-shorts', 'women-bottom-skirt', 'women-loungewear-activewear', 'women-bottom-joggers'],
['women-top-shirt', 'women-outwear-coatjacket', 'women-outwear-blazer', 'women-outwear-coatjacket', 'women-outwear-kimonos'],
['women-accessories-bags']
]
MODEL_NAME = "valentinafeve/yolos-fashionpedia"
feature_extractor = YolosImageProcessor.from_pretrained('hustvl/yolos-small')
model = YolosForObjectDetection.from_pretrained(MODEL_NAME)
def get_category_index(category):
# Find index of label mapping
for i, labels in enumerate(label_mapping):
if category in labels:
break
return i
def get_yolo_index(category):
# Find index of yolo mapping
return yolo_mapping[category]
def fix_channels(t):
"""
Some images may have 4 channels (transparent images) or just 1 channel (black and white images), in order to let the images have only 3 channels. I am going to remove the fourth channel in transparent images and stack the single channel in back and white images.
:param t: Tensor-like image
:return: Tensor-like image with three channels
"""
if len(t.shape) == 2:
return ToPILImage()(torch.stack([t for i in (0, 0, 0)]))
if t.shape[0] == 4:
return ToPILImage()(t[:3])
if t.shape[0] == 1:
return ToPILImage()(torch.stack([t[0] for i in (0, 0, 0)]))
return ToPILImage()(t)
def idx_to_text(i):
return cats[i]
# Random colors used for visualization
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
[0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]]
# for output bounding box post-processing
def box_cxcywh_to_xyxy(x):
x_c, y_c, w, h = x.unbind(1)
b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
(x_c + 0.5 * w), (y_c + 0.5 * h)]
return torch.stack(b, dim=1)
def rescale_bboxes(out_bbox, size):
img_w, img_h = size
b = box_cxcywh_to_xyxy(out_bbox)
b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32)
return b
def plot_results(pil_img, prob, boxes):
plt.figure(figsize=(16,10))
plt.imshow(pil_img)
ax = plt.gca()
colors = COLORS * 100
i = 0
crops = []
crop_classes = []
for p, (xmin, ymin, xmax, ymax), c in zip(prob, boxes.tolist(), colors):
cl = p.argmax()
# Save each box as an image
box_img = pil_img.crop((xmin, ymin, xmax, ymax))
crops.append(box_img)
crop_classes.append(idx_to_text(cl))
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,
fill=False, color=c, linewidth=3))
ax.text(xmin, ymin, idx_to_text(cl), fontsize=10,
bbox=dict(facecolor=c, alpha=0.8))
i += 1
# Remove white padding all around the image
plt.axis('off')
plt.subplots_adjust(left=0, right=1, top=1, bottom=0)
output_img = plt.gcf()
plt.close()
return output_img, crops, crop_classes
def visualize_predictions(image, outputs, threshold=0.8):
# Keep only predictions with confidence >= threshold
probas = outputs.logits.softmax(-1)[0, :, :-1]
keep = probas.max(-1).values > threshold
# Convert predicted boxes from [0; 1] to image scales
bboxes_scaled = rescale_bboxes(outputs.pred_boxes[0, keep].cpu(), image.size)
# Get filtered probabilities and boxes based on the filter list
filter_set = set(filter)
filtered_probas_boxes = [
(proba, box) for proba, box in zip(probas[keep], bboxes_scaled)
if idx_to_text(proba.argmax()) not in filter_set
]
# If there is a jumpsuit or dress detected, remove them if there are other clothes detected
contains_jumpsuit_or_dress = any(idx_to_text(proba.argmax()) in ["jumpsuit", "dress"] for proba, _ in filtered_probas_boxes)
if contains_jumpsuit_or_dress and len(filtered_probas_boxes) > 1:
filtered_probas_boxes = [
(proba, box) for proba, box in filtered_probas_boxes
if idx_to_text(proba.argmax()) not in ["jumpsuit", "dress"]
]
# Remove duplicates: Only keep one box per class
unique_classes = set()
unique_filtered_probas_boxes = []
for proba, box in filtered_probas_boxes:
class_text = idx_to_text(proba.argmax())
if class_text not in unique_classes:
unique_classes.add(class_text)
unique_filtered_probas_boxes.append((proba, box))
# If there are remaining filtered probabilities, plot results
output_img = None
crops = None
crop_classes = None
if unique_filtered_probas_boxes:
final_probas, final_boxes = zip(*unique_filtered_probas_boxes)
output_img, crops, crop_classes = plot_results(image, list(final_probas), torch.stack(final_boxes))
# Return the classes of the detected objects
return [proba.argmax().item() for proba, _ in unique_filtered_probas_boxes], output_img, crops, crop_classes
@spaces.GPU
def get_objects(image, threshold=0.8):
class_counts = {}
image = fix_channels(ToTensor()(image))
image = image.resize((600, 800))
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
detected_classes, output_img, crops, crop_classes = visualize_predictions(image, outputs, threshold=threshold)
for cl in detected_classes:
class_name = idx_to_text(cl)
if class_name not in class_counts:
class_counts[class_name] = 0
class_counts[class_name] += 1
if crop_classes is not None:
crop_classes = [get_yolo_index(c) for c in crop_classes]
return class_counts, output_img, crops, crop_classes
def encode_images_to_base64(cropped_list):
base64_images = []
for image in cropped_list:
with io.BytesIO() as buffer:
image.convert('RGB').save(buffer, format='JPEG')
base64_image = base64.b64encode(buffer.getvalue()).decode('utf-8')
base64_images.append(base64_image)
return base64_images
# def get_cropped_images(images,category):
# cropped_list = []
# resultsPerCategory = {}
# for num, image in enumerate(images):
# image = open_image_from_url(image)
# class_counts, output_img, cropped_images, cropped_classes = get_objects(image, 0.35)
# if not class_counts:
# continue
# # Get the inverse category as any other mapping label except the current one corresponding category
# inverse_category = [label for i, labels in enumerate(label_mapping) for label in labels if i != get_category_index(category) and i != 0]
# # If category is a cardigan, we don't recommend category indices 1 and 3
# if category == 'women-sweatersknits-cardigan':
# inverse_category = [label for i, labels in enumerate(label_mapping) for label in labels if i != get_category_index(category) and i != 1 and i != 3]
# for i, image in enumerate(cropped_images):
# cropped_category = cropped_classes[i]
# print(cropped_category, cropped_classes[i], get_category_index(category))
# specific_category = label_mapping[cropped_category]
# if cropped_category == get_category_index(category):
# continue
# cropped_list.append(image)
# base64_images = encode_images_to_base64(cropped_list)
# return base64_images
def get_cropped_images(images, category):
cropped_list = []
product_crops = []
for num, image in enumerate(images):
try:
image = open_image_from_url(image)
class_counts, output_img, cropped_images, cropped_classes = get_objects(image, 0.37)
if not class_counts:
continue
for i, image in enumerate(cropped_images):
cropped_list.append(image)
# If the detected class is the same as the category, add the image to the product crops
if cropped_classes[i] == get_category_index(category):
product_crops.append(image)
except Exception as e:
print(f"Error processing image {num}: {e}")
return []
# Convert cropped images to base64 strings
base64_images = encode_images_to_base64(cropped_list)
product_base64_images = encode_images_to_base64(product_crops)
return base64_images, product_base64_images
# Define the Gradio interface with the updated components
iface = gr.Interface(
fn=shot,
inputs=[
gr.Textbox(label="Image URLs (starting with http/https) comma seperated "),
gr.Textbox(label="Category"),
gr.Textbox(label="Level; accepted 'variant' or 'product'")
],
outputs="text",
examples=[
[['https://d2q1sfov6ca7my.cloudfront.net/eyJidWNrZXQiOiAiaGljY3VwLWltYWdlLWhvc3RpbmciLCAia2V5IjogIlc4MDAwMDAwMTM0LU9SL1c4MDAwMDAwMTM0LU9SLTEuanBnIiwgImVkaXRzIjogeyJyZXNpemUiOiB7IndpZHRoIjogODAwLCAiaGVpZ2h0IjogMTIwMC4wLCAiZml0IjogIm91dHNpZGUifX19',
'https://d2q1sfov6ca7my.cloudfront.net/eyJidWNrZXQiOiAiaGljY3VwLWltYWdlLWhvc3RpbmciLCAia2V5IjogIlc4MDAwMDAwMTM0LU9SL1c4MDAwMDAwMTM0LU9SLTIuanBnIiwgImVkaXRzIjogeyJyZXNpemUiOiB7IndpZHRoIjogODAwLCAiaGVpZ2h0IjogMTIwMC4wLCAiZml0IjogIm91dHNpZGUifX19',
'https://d2q1sfov6ca7my.cloudfront.net/eyJidWNrZXQiOiAiaGljY3VwLWltYWdlLWhvc3RpbmciLCAia2V5IjogIlc4MDAwMDAwMTM0LU9SL1c4MDAwMDAwMTM0LU9SLTMuanBnIiwgImVkaXRzIjogeyJyZXNpemUiOiB7IndpZHRoIjogODAwLCAiaGVpZ2h0IjogMTIwMC4wLCAiZml0IjogIm91dHNpZGUifX19'], "women-top-shirt","variant"]],
description="Add an image URL (starting with http/https) or upload a picture, and provide a list of labels separated by commas.",
title="Full product flow"
)
# Launch the interface
iface.launch() |