ai-product-data / app.py
Not-Adam's picture
Return cropped images if fail (#4)
34e6e0e verified
raw
history blame
22.2 kB
import io
import ast
import json
import base64
import spaces
import requests
import numpy as np
import gradio as gr
from PIL import Image
from io import BytesIO
import face_recognition
from turtle import title
from openai import OpenAI
from collections import Counter
from transformers import pipeline
import urllib.request
from transformers import YolosImageProcessor, YolosForObjectDetection
import torch
import matplotlib.pyplot as plt
from torchvision.transforms import ToTensor, ToPILImage
client = OpenAI()
pipe = pipeline("zero-shot-image-classification", model="patrickjohncyh/fashion-clip")
color_file_path = 'color_config.json'
attributes_file_path = 'attributes_config.json'
import os
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
# Open and read the COLOR JSON file
with open(color_file_path, 'r') as file:
color_data = json.load(file)
# Open and read the ATTRIBUTES JSON file
with open(attributes_file_path, 'r') as file:
attributes_data = json.load(file)
COLOURS_DICT = color_data['color_mapping']
ATTRIBUTES_DICT = attributes_data['attribute_mapping']
def shot(input, category, level):
output_dict = {}
if level == 'variant':
subColour, mainColour, score = get_colour(ast.literal_eval(str(input)), category)
openai_parsed_response = get_openAI_tags(ast.literal_eval(str(input)))
face_embeddings = get_face_embeddings(ast.literal_eval(str(input)))
cropped_images = get_cropped_images(ast.literal_eval(str(input)), category)
# Ensure all outputs are JSON serializable
output_dict['colors'] = {
"main": mainColour,
"sub": subColour,
"score": score
}
output_dict['image_mapping'] = openai_parsed_response
output_dict['face_embeddings'] = face_embeddings
output_dict['cropped_images'] = cropped_images
if level == 'product':
common_result = get_predicted_attributes(ast.literal_eval(str(input)), category)
output_dict['attributes'] = common_result
output_dict['subcategory'] = category
# # Convert the dictionary to a JSON-serializable format
# try:
# serialized_output = json.dumps(output_dict)
# except TypeError as e:
# print(f"Serialization Error: {e}")
# return {"error": "Serialization failed"}
return json.dumps(output_dict)
# @spaces.GPU
# def get_colour(image_urls, category):
# colourLabels = list(COLOURS_DICT.keys())
# for i in range(len(colourLabels)):
# colourLabels[i] = colourLabels[i] + " clothing: " + category
# responses = pipe(image_urls, candidate_labels=colourLabels)
# # Get the most common colour
# mainColour = responses[0][0]['label'].split(" clothing:")[0]
# if mainColour not in COLOURS_DICT:
# return None, None, None
# # Add category to the end of each label
# labels = COLOURS_DICT[mainColour]
# for i in range(len(labels)):
# labels[i] = labels[i] + " clothing: " + category
# # Run pipeline in one go
# responses = pipe(image_urls, candidate_labels=labels)
# subColour = responses[0][0]['label'].split(" clothing:")[0]
# return subColour, mainColour, responses[0][0]['score']
@spaces.GPU
def get_colour(image_urls, category):
# Prepare color labels
colourLabels = [f"{color} clothing: {category}" for color in COLOURS_DICT.keys()]
print("Colour Labels:", colourLabels) # Debug: Print colour labels
print("Image URLs:", image_urls) # Debug: Print image URLs
# Split labels into two batches
mid_index = len(colourLabels) // 2
first_batch = colourLabels[:mid_index]
second_batch = colourLabels[mid_index:]
# Process the first batch
responses_first_batch = pipe(image_urls, candidate_labels=first_batch)
# Get the top 3 from the first batch
top3_first_batch = sorted(responses_first_batch[0], key=lambda x: x['score'], reverse=True)[:3]
# Process the second batch
responses_second_batch = pipe(image_urls, candidate_labels=second_batch)
# Get the top 3 from the second batch
top3_second_batch = sorted(responses_second_batch[0], key=lambda x: x['score'], reverse=True)[:3]
# Combine the top 3 from each batch
combined_top6 = top3_first_batch + top3_second_batch
# Get the final top 3 from the combined list
final_top3 = sorted(combined_top6, key=lambda x: x['score'], reverse=True)[:3]
mainColour = final_top3[0]['label'].split(" clothing:")[0]
if mainColour not in COLOURS_DICT:
return None, None, None
# Get sub-colors for the main color
labels = [f"{label} clothing: {category}" for label in COLOURS_DICT[mainColour]]
print("Labels for pipe:", labels) # Debug: Confirm labels are correct
responses = pipe(image_urls, candidate_labels=labels)
subColour = responses[0][0]['label'].split(" clothing:")[0]
return subColour, mainColour, responses[0][0]['score']
@spaces.GPU
def get_predicted_attributes(image_urls, category):
# Assuming ATTRIBUTES_DICT and pipe are defined outside this function
attributes = list(ATTRIBUTES_DICT.get(category, {}).keys())
# Mapping of possible values per attribute
common_result = []
for attribute in attributes:
values = ATTRIBUTES_DICT.get(category, {}).get(attribute, [])
if len(values) == 0:
continue
# Adjust labels for the pipeline to be in format: "{attr}: {value}, clothing: {category}"
attribute_formatted = attribute.replace("colartype", "collar").replace("sleevelength", "sleeve length").replace("fabricstyle", "fabric")
values_formatted = [f"{attribute_formatted}: {value}, clothing: {category}" for value in values]
# Get the predicted values for the attribute
responses = pipe(image_urls, candidate_labels=values_formatted)
result = [response[0]['label'].split(", clothing:")[0] for response in responses]
# If attribute is details, then get the top 2 most common labels
if attribute_formatted == "details":
result += [response[1]['label'].split(", clothing:")[0] for response in responses]
common_result.append(Counter(result).most_common(2))
else:
common_result.append(Counter(result).most_common(1))
# Clean up the results into one long string
for i, result in enumerate(common_result):
common_result[i] = ", ".join([f"{x[0]}" for x in result])
result = {}
# Iterate through the list and split each item into key and value
for item in common_result:
# Split by ': ' to separate the key and value
key, value = item.split(': ', 1)
if key == "details":
details_split = value.split(" , ")
if len(details_split) == 2:
result["details1"] = details_split[0].lower()
result["details2"] = details_split[1].lower()
else:
result["details1"] = value.lower() # If there's only one detail, assign it to details 1
else:
result[key.lower().replace("collar", "colartype").replace("sleeve length", "sleevelength").replace("fabric", "fabricstyle")] = value.lower()
return result
def get_openAI_tags(image_urls):
# Create list containing JSONs of each image URL
imageList = []
for image in image_urls:
imageList.append({"type": "image_url", "image_url": {"url": image}})
try:
openai_response = client.chat.completions.create(
model="gpt-4o",
messages=[
{
"role": "system",
"content": [
{
"type": "text",
"text": "You're a tagging assistant, you will help label and tag product pictures for my online e-commerce platform. Your tasks will be to return which angle the product images were taken from. You will have to choose from 'full-body', 'half-body', 'side', 'back', or 'zoomed' angles. You should label each of the images with one of these labels depending on which you think fits best (ideally, every label should be used at least once, but only if there are 5 or more images), and should respond with an unformatted dictionary where the key is a string representation of the url index of the url and the value is the assigned label."
}
]
},
{
"role": "user",
"content": imageList
},
],
temperature=1,
max_tokens=500,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
response = json.loads(openai_response.choices[0].message.content)
return response
except Exception as e:
print(f"OpenAI API Error: {e}")
return {}
@spaces.GPU
def get_face_embeddings(image_urls):
# Initialize a dictionary to store the face encodings or errors
results = {}
# Loop through each image URL
for index, url in enumerate(image_urls):
try:
# Try to download the image from the URL
response = requests.get(url)
# Raise an exception if the response is not successful
response.raise_for_status()
# Load the image using face_recognition
image = face_recognition.load_image_file(BytesIO(response.content))
# Get the face encodings for all faces in the image
face_encodings = face_recognition.face_encodings(image)
# If no faces are detected, store an empty list
if not face_encodings:
results[str(index)] = []
else:
# Otherwise, store the first face encoding as a list
results[str(index)] = face_encodings[0].tolist()
except Exception as e:
# If any error occurs during the download or processing, store the error message
results[str(index)] = f"Error processing image: {str(e)}"
return results
# new
ACCURACY_THRESHOLD = 0.86
def open_image_from_url(url):
# Fetch the image from the URL
response = requests.get(url, stream=True)
response.raise_for_status() # Check if the request was successful
# Open the image using PIL
image = Image.open(BytesIO(response.content))
return image
# Add the main data to the session state
main = [['Product Id', 'Sku', 'Color', 'Images', 'Status', 'Category', 'Text']]
# This is the order of the categories list. NO NOT CHANGE. Just for visualization purposes
cats = ['shirt, blouse', 'top, t-shirt, sweatshirt', 'sweater', 'cardigan', 'jacket', 'vest', 'pants', 'shorts', 'skirt', 'coat', 'dress', 'jumpsuit', 'cape', 'glasses', 'hat', 'headband, head covering, hair accessory', 'tie', 'glove', 'watch', 'belt', 'leg warmer', 'tights, stockings', 'sock', 'shoe', 'bag, wallet', 'scarf', 'umbrella', 'hood', 'collar', 'lapel', 'epaulette', 'sleeve', 'pocket', 'neckline', 'buckle', 'zipper', 'applique', 'bead', 'bow', 'flower', 'fringe', 'ribbon', 'rivet', 'ruffle', 'sequin', 'tassel']
filter = ['dress', 'jumpsuit', 'cape', 'glasses', 'hat', 'headband, head covering, hair accessory', 'tie', 'glove', 'watch', 'belt', 'leg warmer', 'tights, stockings', 'sock', 'shoe', 'scarf', 'umbrella', 'hood', 'collar', 'lapel', 'epaulette', 'sleeve', 'pocket', 'neckline', 'buckle', 'zipper', 'applique', 'bead', 'bow', 'flower', 'fringe', 'ribbon', 'rivet', 'ruffle', 'sequin', 'tassel']
# 0 for full body, 1 for upper body, 2 for lower body, 3 for over body (jacket, coat, etc), 4 for accessories
yolo_mapping = {
'shirt, blouse': 3,
'top, t-shirt, sweatshirt' : 1,
'sweater': 1,
'cardigan': 1,
'jacket': 3,
'vest': 1,
'pants': 2,
'shorts': 2,
'skirt': 2,
'coat': 3,
'dress': 0,
'jumpsuit': 0,
'bag, wallet': 4
}
# First line full body, second line upper body, third line lower body, fourth line over body, fifth line accessories
label_mapping = [
['women-dress-mini', 'women-dress-dress', 'women-dress-maxi', 'women-dress-midi', 'women-playsuitsjumpsuits-playsuit', 'women-playsuitsjumpsuits-jumpsuit', 'women-coords-coords', 'women-swimwear-onepieces', 'women-swimwear-bikinisets'],
['women-sweatersknits-cardigan', 'women-top-waistcoat', 'women-top-blouse', 'women-sweatersknits-blouse', 'women-sweatersknits-sweater', 'women-top-top', 'women-loungewear-hoodie', 'women-top-camistanks', 'women-top-tshirt', 'women-top-croptop', 'women-loungewear-sweatshirt', 'women-top-body'],
['women-loungewear-joggers', 'women-bottom-trousers', 'women-bottom-leggings', 'women-bottom-jeans', 'women-bottom-shorts', 'women-bottom-skirt', 'women-loungewear-activewear', 'women-bottom-joggers'],
['women-top-shirt', 'women-outwear-coatjacket', 'women-outwear-blazer', 'women-outwear-coatjacket', 'women-outwear-kimonos'],
['women-accessories-bags']
]
MODEL_NAME = "valentinafeve/yolos-fashionpedia"
feature_extractor = YolosImageProcessor.from_pretrained('hustvl/yolos-small')
model = YolosForObjectDetection.from_pretrained(MODEL_NAME)
def get_category_index(category):
# Find index of label mapping
for i, labels in enumerate(label_mapping):
if category in labels:
break
return i
def get_yolo_index(category):
# Find index of yolo mapping
return yolo_mapping[category]
def fix_channels(t):
"""
Some images may have 4 channels (transparent images) or just 1 channel (black and white images), in order to let the images have only 3 channels. I am going to remove the fourth channel in transparent images and stack the single channel in back and white images.
:param t: Tensor-like image
:return: Tensor-like image with three channels
"""
if len(t.shape) == 2:
return ToPILImage()(torch.stack([t for i in (0, 0, 0)]))
if t.shape[0] == 4:
return ToPILImage()(t[:3])
if t.shape[0] == 1:
return ToPILImage()(torch.stack([t[0] for i in (0, 0, 0)]))
return ToPILImage()(t)
def idx_to_text(i):
return cats[i]
# Random colors used for visualization
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
[0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]]
# for output bounding box post-processing
def box_cxcywh_to_xyxy(x):
x_c, y_c, w, h = x.unbind(1)
b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
(x_c + 0.5 * w), (y_c + 0.5 * h)]
return torch.stack(b, dim=1)
def rescale_bboxes(out_bbox, size):
img_w, img_h = size
b = box_cxcywh_to_xyxy(out_bbox)
b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32)
return b
def plot_results(pil_img, prob, boxes):
plt.figure(figsize=(16,10))
plt.imshow(pil_img)
ax = plt.gca()
colors = COLORS * 100
i = 0
crops = []
crop_classes = []
for p, (xmin, ymin, xmax, ymax), c in zip(prob, boxes.tolist(), colors):
cl = p.argmax()
# Save each box as an image
box_img = pil_img.crop((xmin, ymin, xmax, ymax))
crops.append(box_img)
crop_classes.append(idx_to_text(cl))
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,
fill=False, color=c, linewidth=3))
ax.text(xmin, ymin, idx_to_text(cl), fontsize=10,
bbox=dict(facecolor=c, alpha=0.8))
i += 1
# Remove white padding all around the image
plt.axis('off')
plt.subplots_adjust(left=0, right=1, top=1, bottom=0)
output_img = plt.gcf()
plt.close()
return output_img, crops, crop_classes
def visualize_predictions(image, outputs, threshold=0.8):
# Keep only predictions with confidence >= threshold
probas = outputs.logits.softmax(-1)[0, :, :-1]
keep = probas.max(-1).values > threshold
# Convert predicted boxes from [0; 1] to image scales
bboxes_scaled = rescale_bboxes(outputs.pred_boxes[0, keep].cpu(), image.size)
# Get filtered probabilities and boxes based on the filter list
filter_set = set(filter)
filtered_probas_boxes = [
(proba, box) for proba, box in zip(probas[keep], bboxes_scaled)
if idx_to_text(proba.argmax()) not in filter_set
]
# If there is a jumpsuit or dress detected, remove them if there are other clothes detected
contains_jumpsuit_or_dress = any(idx_to_text(proba.argmax()) in ["jumpsuit", "dress"] for proba, _ in filtered_probas_boxes)
if contains_jumpsuit_or_dress and len(filtered_probas_boxes) > 1:
filtered_probas_boxes = [
(proba, box) for proba, box in filtered_probas_boxes
if idx_to_text(proba.argmax()) not in ["jumpsuit", "dress"]
]
# Remove duplicates: Only keep one box per class
unique_classes = set()
unique_filtered_probas_boxes = []
for proba, box in filtered_probas_boxes:
class_text = idx_to_text(proba.argmax())
if class_text not in unique_classes:
unique_classes.add(class_text)
unique_filtered_probas_boxes.append((proba, box))
# If there are remaining filtered probabilities, plot results
output_img = None
crops = None
crop_classes = None
if unique_filtered_probas_boxes:
final_probas, final_boxes = zip(*unique_filtered_probas_boxes)
output_img, crops, crop_classes = plot_results(image, list(final_probas), torch.stack(final_boxes))
# Return the classes of the detected objects
return [proba.argmax().item() for proba, _ in unique_filtered_probas_boxes], output_img, crops, crop_classes
@spaces.GPU
def get_objects(image, threshold=0.8):
class_counts = {}
image = fix_channels(ToTensor()(image))
image = image.resize((600, 800))
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
detected_classes, output_img, crops, crop_classes = visualize_predictions(image, outputs, threshold=threshold)
for cl in detected_classes:
class_name = idx_to_text(cl)
if class_name not in class_counts:
class_counts[class_name] = 0
class_counts[class_name] += 1
if crop_classes is not None:
crop_classes = [get_yolo_index(c) for c in crop_classes]
return class_counts, output_img, crops, crop_classes
def encode_images_to_base64(cropped_list):
base64_images = []
for image in cropped_list:
with io.BytesIO() as buffer:
image.convert('RGB').save(buffer, format='JPEG')
base64_image = base64.b64encode(buffer.getvalue()).decode('utf-8')
base64_images.append(base64_image)
return base64_images
# def get_cropped_images(images,category):
# cropped_list = []
# resultsPerCategory = {}
# for num, image in enumerate(images):
# image = open_image_from_url(image)
# class_counts, output_img, cropped_images, cropped_classes = get_objects(image, 0.37)
# if not class_counts:
# continue
# # Get the inverse category as any other mapping label except the current one corresponding category
# inverse_category = [label for i, labels in enumerate(label_mapping) for label in labels if i != get_category_index(category) and i != 0]
# # If category is a cardigan, we don't recommend category indices 1 and 3
# if category == 'women-sweatersknits-cardigan':
# inverse_category = [label for i, labels in enumerate(label_mapping) for label in labels if i != get_category_index(category) and i != 1 and i != 3]
# for i, image in enumerate(cropped_images):
# cropped_category = cropped_classes[i]
# print(cropped_category, cropped_classes[i], get_category_index(category))
# specific_category = label_mapping[cropped_category]
# if cropped_category == get_category_index(category):
# continue
# cropped_list.append(image)
# base64_images = encode_images_to_base64(cropped_list)
# return base64_images
def get_cropped_images(images, category):
cropped_list = []
resultsPerCategory = {}
for num, image in enumerate(images):
try:
image = open_image_from_url(image)
class_counts, output_img, cropped_images, cropped_classes = get_objects(image, 0.37)
if not class_counts:
continue
for i, image in enumerate(cropped_images):
cropped_list.append(image)
except Exception as e:
print(f"Error processing image {num}: {e}")
return []
# Convert cropped images to base64 strings
base64_images = encode_images_to_base64(cropped_list)
return base64_images
# Define the Gradio interface with the updated components
iface = gr.Interface(
fn=shot,
inputs=[
gr.Textbox(label="Image URLs (starting with http/https) comma seperated "),
gr.Textbox(label="Category"),
gr.Textbox(label="Level; accepted 'variant' or 'product'")
],
outputs="text",
examples=[
[['https://d2q1sfov6ca7my.cloudfront.net/eyJidWNrZXQiOiAiaGljY3VwLWltYWdlLWhvc3RpbmciLCAia2V5IjogIlc4MDAwMDAwMTM0LU9SL1c4MDAwMDAwMTM0LU9SLTEuanBnIiwgImVkaXRzIjogeyJyZXNpemUiOiB7IndpZHRoIjogODAwLCAiaGVpZ2h0IjogMTIwMC4wLCAiZml0IjogIm91dHNpZGUifX19',
'https://d2q1sfov6ca7my.cloudfront.net/eyJidWNrZXQiOiAiaGljY3VwLWltYWdlLWhvc3RpbmciLCAia2V5IjogIlc4MDAwMDAwMTM0LU9SL1c4MDAwMDAwMTM0LU9SLTIuanBnIiwgImVkaXRzIjogeyJyZXNpemUiOiB7IndpZHRoIjogODAwLCAiaGVpZ2h0IjogMTIwMC4wLCAiZml0IjogIm91dHNpZGUifX19',
'https://d2q1sfov6ca7my.cloudfront.net/eyJidWNrZXQiOiAiaGljY3VwLWltYWdlLWhvc3RpbmciLCAia2V5IjogIlc4MDAwMDAwMTM0LU9SL1c4MDAwMDAwMTM0LU9SLTMuanBnIiwgImVkaXRzIjogeyJyZXNpemUiOiB7IndpZHRoIjogODAwLCAiaGVpZ2h0IjogMTIwMC4wLCAiZml0IjogIm91dHNpZGUifX19'], "women-top-shirt","variant"]],
description="Add an image URL (starting with http/https) or upload a picture, and provide a list of labels separated by commas.",
title="Full product flow"
)
# Launch the interface
iface.launch()