themanas021's picture
Create app.py
ea7212d verified
raw
history blame
943 Bytes
import gradio as gr
from transformers import pipeline
# Load the model
model_name = "knowledgator/comprehend_it-base"
classifier = pipeline("zero-shot-classification", model=model_name, device="cpu")
# Function to classify feedback
def classify_feedback(feedback_text):
# Classify feedback using the loaded model
labels = ["High Priority ticket", "Low Priority ticket", "Medium Priority ticket"]
result = classifier(feedback_text, labels, multi_label=True)
# Get the top label associated with the feedback
top_label = result["labels"][0]
return top_label
# Create Gradio interface
feedback_textbox = gr.Textbox(label="Enter your feedback:")
feedback_output = gr.Label(label="Top Label:")
gr.Interface(
fn=classify_feedback,
inputs=feedback_textbox,
outputs=feedback_output,
title="Feedback Classifier",
description="Enter your feedback and get the priority label for your ticket."
).launch()