Spaces:
Running
Running
themanas021
commited on
Commit
·
365a9d8
1
Parent(s):
ebef8da
Create model.py
Browse files
model.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os, shutil
|
3 |
+
import random
|
4 |
+
|
5 |
+
|
6 |
+
from PIL import Image
|
7 |
+
import jax
|
8 |
+
from transformers import FlaxVisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer
|
9 |
+
from huggingface_hub import hf_hub_download
|
10 |
+
|
11 |
+
|
12 |
+
# create target model directory
|
13 |
+
model_dir = './models/'
|
14 |
+
os.makedirs(model_dir, exist_ok=True)
|
15 |
+
|
16 |
+
files_to_download = [
|
17 |
+
"config.json",
|
18 |
+
"flax_model.msgpack",
|
19 |
+
"merges.txt",
|
20 |
+
"special_tokens_map.json",
|
21 |
+
"tokenizer.json",
|
22 |
+
"tokenizer_config.json",
|
23 |
+
"vocab.json",
|
24 |
+
"preprocessor_config.json",
|
25 |
+
]
|
26 |
+
|
27 |
+
# copy files from checkpoint hub:
|
28 |
+
for fn in files_to_download:
|
29 |
+
file_path = hf_hub_download("ydshieh/vit-gpt2-coco-en-ckpts", f"ckpt_epoch_3_step_6900/{fn}")
|
30 |
+
shutil.copyfile(file_path, os.path.join(model_dir, fn))
|
31 |
+
|
32 |
+
model = FlaxVisionEncoderDecoderModel.from_pretrained(model_dir)
|
33 |
+
feature_extractor = ViTFeatureExtractor.from_pretrained(model_dir)
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
35 |
+
|
36 |
+
max_length = 16
|
37 |
+
num_beams = 4
|
38 |
+
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
|
39 |
+
|
40 |
+
|
41 |
+
@jax.jit
|
42 |
+
def generate(pixel_values):
|
43 |
+
output_ids = model.generate(pixel_values, **gen_kwargs).sequences
|
44 |
+
return output_ids
|
45 |
+
|
46 |
+
|
47 |
+
def predict(image):
|
48 |
+
|
49 |
+
if image.mode != "RGB":
|
50 |
+
image = image.convert(mode="RGB")
|
51 |
+
|
52 |
+
pixel_values = feature_extractor(images=image, return_tensors="np").pixel_values
|
53 |
+
|
54 |
+
output_ids = generate(pixel_values)
|
55 |
+
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
56 |
+
preds = [pred.strip() for pred in preds]
|
57 |
+
|
58 |
+
return preds[0]
|
59 |
+
|
60 |
+
|
61 |
+
def _compile():
|
62 |
+
|
63 |
+
image_path = 'samples/val_000000039769.jpg'
|
64 |
+
image = Image.open(image_path)
|
65 |
+
predict(image)
|
66 |
+
image.close()
|
67 |
+
|
68 |
+
|
69 |
+
_compile()
|
70 |
+
|
71 |
+
|
72 |
+
sample_dir = './samples/'
|
73 |
+
sample_image_ids = tuple(["None"] + [int(f.replace('COCO_val2017_', '').replace('.jpg', '')) for f in os.listdir(sample_dir) if f.startswith('COCO_val2017_')])
|
74 |
+
|
75 |
+
with open(os.path.join(sample_dir, "coco-val2017-img-ids.json"), "r", encoding="UTF-8") as fp:
|
76 |
+
coco_2017_val_image_ids = json.load(fp)
|
77 |
+
|
78 |
+
|
79 |
+
def get_random_image_id():
|
80 |
+
|
81 |
+
image_id = random.sample(coco_2017_val_image_ids, k=1)[0]
|
82 |
+
return image_id
|