import spaces import os import imageio import numpy as np import torch import rembg from PIL import Image from torchvision.transforms import v2 from pytorch_lightning import seed_everything from omegaconf import OmegaConf from einops import rearrange, repeat from tqdm import tqdm from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler from src.utils.train_util import instantiate_from_config from src.utils.camera_util import ( FOV_to_intrinsics, get_zero123plus_input_cameras, get_circular_camera_poses, ) from src.utils.mesh_util import save_obj, save_glb from src.utils.infer_util import remove_background, resize_foreground, images_to_video import tempfile from functools import partial from huggingface_hub import hf_hub_download import gradio as gr def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False): """ Get the rendering camera parameters. """ c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation) if is_flexicubes: cameras = torch.linalg.inv(c2ws) cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1) else: extrinsics = c2ws.flatten(-2) intrinsics = FOV_to_intrinsics(50.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2) cameras = torch.cat([extrinsics, intrinsics], dim=-1) cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1) return cameras def images_to_video(images, output_path, fps=30): # images: (N, C, H, W) os.makedirs(os.path.dirname(output_path), exist_ok=True) frames = [] for i in range(images.shape[0]): frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8).clip(0, 255) assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \ f"Frame shape mismatch: {frame.shape} vs {images.shape}" assert frame.min() >= 0 and frame.max() <= 255, \ f"Frame value out of range: {frame.min()} ~ {frame.max()}" frames.append(frame) imageio.mimwrite(output_path, np.stack(frames), fps=fps, codec='h264') ############################################################################### # Configuration. ############################################################################### import shutil def find_cuda(): # Check if CUDA_HOME or CUDA_PATH environment variables are set cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH') if cuda_home and os.path.exists(cuda_home): return cuda_home # Search for the nvcc executable in the system's PATH nvcc_path = shutil.which('nvcc') if nvcc_path: # Remove the 'bin/nvcc' part to get the CUDA installation path cuda_path = os.path.dirname(os.path.dirname(nvcc_path)) return cuda_path return None cuda_path = find_cuda() if cuda_path: print(f"CUDA installation found at: {cuda_path}") else: print("CUDA installation not found") config_path = 'configs/instant-mesh-large.yaml' config = OmegaConf.load(config_path) config_name = os.path.basename(config_path).replace('.yaml', '') model_config = config.model_config infer_config = config.infer_config IS_FLEXICUBES = True if config_name.startswith('instant-mesh') else False device = torch.device('cuda') # load diffusion model print('Loading diffusion model ...') pipeline = DiffusionPipeline.from_pretrained( "sudo-ai/zero123plus-v1.2", custom_pipeline="zero123plus", torch_dtype=torch.float16, ) pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config( pipeline.scheduler.config, timestep_spacing='trailing' ) # load custom white-background UNet unet_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model") state_dict = torch.load(unet_ckpt_path, map_location='cpu') pipeline.unet.load_state_dict(state_dict, strict=True) pipeline = pipeline.to(device) # load reconstruction model print('Loading reconstruction model ...') model_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="instant_mesh_large.ckpt", repo_type="model") model = instantiate_from_config(model_config) state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict'] state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.') and 'source_camera' not in k} model.load_state_dict(state_dict, strict=True) model = model.to(device) print('Loading Finished!') def check_input_image(input_image): if input_image is None: raise gr.Error("No image uploaded!") def preprocess(input_image, do_remove_background): rembg_session = rembg.new_session() if do_remove_background else None if do_remove_background: input_image = remove_background(input_image, rembg_session) input_image = resize_foreground(input_image, 0.85) return input_image @spaces.GPU def generate_mvs(input_image, sample_steps, sample_seed): seed_everything(sample_seed) # sampling z123_image = pipeline( input_image, num_inference_steps=sample_steps ).images[0] show_image = np.asarray(z123_image, dtype=np.uint8) show_image = torch.from_numpy(show_image) # (960, 640, 3) show_image = rearrange(show_image, '(n h) (m w) c -> (n m) h w c', n=3, m=2) show_image = rearrange(show_image, '(n m) h w c -> (n h) (m w) c', n=2, m=3) show_image = Image.fromarray(show_image.numpy()) return z123_image, show_image @spaces.GPU def make3d(images): global model if IS_FLEXICUBES: model.init_flexicubes_geometry(device, use_renderer=False) model = model.eval() images = np.asarray(images, dtype=np.float32) / 255.0 images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float() # (3, 960, 640) images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2) # (6, 3, 320, 320) input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to(device) render_cameras = get_render_cameras(batch_size=1, radius=2.5, is_flexicubes=IS_FLEXICUBES).to(device) images = images.unsqueeze(0).to(device) images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1) mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name print(mesh_fpath) mesh_basename = os.path.basename(mesh_fpath).split('.')[0] mesh_dirname = os.path.dirname(mesh_fpath) video_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.mp4") mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb") with torch.no_grad(): # get triplane planes = model.forward_planes(images, input_cameras) # # get video # chunk_size = 20 if IS_FLEXICUBES else 1 # render_size = 384 # frames = [] # for i in tqdm(range(0, render_cameras.shape[1], chunk_size)): # if IS_FLEXICUBES: # frame = model.forward_geometry( # planes, # render_cameras[:, i:i+chunk_size], # render_size=render_size, # )['img'] # else: # frame = model.synthesizer( # planes, # cameras=render_cameras[:, i:i+chunk_size], # render_size=render_size, # )['images_rgb'] # frames.append(frame) # frames = torch.cat(frames, dim=1) # images_to_video( # frames[0], # video_fpath, # fps=30, # ) # print(f"Video saved to {video_fpath}") # get mesh mesh_out = model.extract_mesh( planes, use_texture_map=False, **infer_config, ) vertices, faces, vertex_colors = mesh_out vertices = vertices[:, [1, 2, 0]] save_glb(vertices, faces, vertex_colors, mesh_glb_fpath) save_obj(vertices, faces, vertex_colors, mesh_fpath) print(f"Mesh saved to {mesh_fpath}") return mesh_fpath, mesh_glb_fpath _HEADER_ = '''

🚀 LUNAAR: Fotoğraftan Anında 3D Model Üretimi

LUNAAR, yüklediğiniz tek bir fotoğrafla hızlı ve yüksek doğrulukta 3D modeller oluşturan yenilikçi bir platformdur. Hem ürün görselleştirmesi hem de artırılmış gerçeklik (AR) deneyimlerine anında geçiş sağlar. 🛋️ 🔧 **Nasıl Çalışır?** - Fotoğrafınızı yükleyin. Yapay zeka arka planı otomatik temizler, eksik açılardan görünüm oluşturur. - Dakikalar içinde .OBJ ve .GLB formatlarında tam 3D model elde edin. 💡 **Neden LUNAAR?** - **Yüksek Hız ve Doğruluk:** Tek bir fotoğrafla hızlı ve hassas 3D modelleme imkanı. - **Kapsamlı Uygulama Alanları:** AR entegrasyonu sayesinde e-ticaret, mimari ve ürün tasarımı gibi farklı sektörlere kolayca adapte edilebilir. - **Kolay Kullanım:** Gelişmiş yapay zeka teknolojimiz sayesinde profesyonel düzeyde modeller oluşturmak artık herkesin erişiminde. 💡 **Dikkat Edilmesi Gerekenler:** - Sonuçlar fotoğraf kalitesine bağlıdır. En iyi sonuçları almak için farklı **detay değerlerini** deneyin (Varsayılan: 42). - Platformumuz, 3D modelleri hızlı bir şekilde dışa aktarmanızı ve AR için hazır hale getirmenizi sağlar. ''' _CITE_ = r""" LUNAAR'ı beğendiyseniz, lütfen destekleyin. Teşekkürler! 📧 **İletişim** Sorularınız mı var? Bize spark@lunaarvision.com üzerinden ulaşabilirsiniz. """ theme = gr.themes.Base() with gr.Blocks(theme=theme, css="footer{display:none !important}") as demo: gr.Markdown(_HEADER_) with gr.Row(variant="panel"): with gr.Column(): with gr.Row(): input_image = gr.Image( label="Yüklenen Görsel", image_mode="RGBA", sources="upload", type="pil", elem_id="content_image", ) processed_image = gr.Image( label="İşlenmiş Görsel", image_mode="RGBA", type="pil", interactive=False ) with gr.Row(): with gr.Group(): do_remove_background = gr.Checkbox( label="Arka Planı Kaldır", value=True ) sample_seed = gr.Number( value=42, label="Detay Değeri", precision=0 ) sample_steps = gr.Slider( label="Örnekleme Adımları", minimum=30, maximum=75, value=75, step=5 ) with gr.Row(): submit = gr.Button("Generate", elem_id="generate", variant="primary") with gr.Row(variant="panel"): gr.Examples( examples=[os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples"))], inputs=[input_image], label="Örnekler", cache_examples=False, examples_per_page=16 ) with gr.Column(): with gr.Row(): with gr.Column(): mv_show_images = gr.Image( label="Oluşturulan Çoklu Görünüm", type="pil", width=379, interactive=False ) with gr.Row(): with gr.Tab("OBJ"): output_model_obj = gr.Model3D( label="Çıktı Modeli (OBJ Formatı)", interactive=False, ) gr.Markdown("Not: İndirilen .obj modeli ters olabilir. Kullanımdan önce manuel çevirin veya .glb formatında dışa aktarın.") with gr.Tab("GLB"): output_model_glb = gr.Model3D( label="Çıktı Modeli (GLB Formatı)", interactive=False, ) gr.Markdown("Not: Model burada daha koyu görünebilir. Doğru sonuçlar için indirip kontrol edin.") with gr.Row(): gr.Markdown('''Sonuç tatmin edici değilse, farklı bir detay değeri deneyin (Varsayılan: 42).''') gr.Markdown(_CITE_) mv_images = gr.State() submit.click(fn=check_input_image, inputs=[input_image]).success( fn=preprocess, inputs=[input_image, do_remove_background], outputs=[processed_image], ).success( fn=generate_mvs, inputs=[processed_image, sample_steps, sample_seed], outputs=[mv_images, mv_show_images] ).success( fn=make3d, inputs=[mv_images], outputs=[output_model_obj, output_model_glb] ) demo.launch()