Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
4 |
+
|
5 |
+
# Set device
|
6 |
+
device = "mps" if torch.backends.mps.is_available() else "cuda" if torch.cuda.is_available() else "cpu"
|
7 |
+
|
8 |
+
# Load model and tokenizer
|
9 |
+
model_path = "thenHung/question_decomposer_t5"
|
10 |
+
tokenizer = T5Tokenizer.from_pretrained(model_path)
|
11 |
+
model = T5ForConditionalGeneration.from_pretrained(model_path)
|
12 |
+
model.to(device)
|
13 |
+
model.eval()
|
14 |
+
|
15 |
+
def decompose_question(question):
|
16 |
+
"""
|
17 |
+
Decompose a complex question into sub-questions
|
18 |
+
|
19 |
+
Args:
|
20 |
+
question (str): Input complex question
|
21 |
+
|
22 |
+
Returns:
|
23 |
+
list: List of decomposed sub-questions
|
24 |
+
"""
|
25 |
+
try:
|
26 |
+
# Prepare input
|
27 |
+
input_text = f"decompose question: {question}"
|
28 |
+
input_ids = tokenizer(
|
29 |
+
input_text,
|
30 |
+
max_length=128,
|
31 |
+
padding="max_length",
|
32 |
+
truncation=True,
|
33 |
+
return_tensors="pt"
|
34 |
+
).input_ids.to(device)
|
35 |
+
|
36 |
+
# Generate sub-questions
|
37 |
+
with torch.no_grad():
|
38 |
+
outputs = model.generate(
|
39 |
+
input_ids,
|
40 |
+
max_length=128,
|
41 |
+
num_beams=4,
|
42 |
+
early_stopping=True
|
43 |
+
)
|
44 |
+
|
45 |
+
# Decode and split output
|
46 |
+
decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
47 |
+
sub_questions = decoded_output.split(" [SEP] ")
|
48 |
+
|
49 |
+
return sub_questions
|
50 |
+
except Exception as e:
|
51 |
+
return [f"Error: {str(e)}"]
|
52 |
+
|
53 |
+
# Create Gradio interface
|
54 |
+
demo = gr.Interface(
|
55 |
+
fn=decompose_question,
|
56 |
+
inputs=gr.Textbox(label="Enter your complex question"),
|
57 |
+
outputs=gr.JSON(label="Decomposed Sub-Questions"),
|
58 |
+
title="Question Decomposer",
|
59 |
+
description="Breaks down complex questions into simpler sub-questions using a T5 model",
|
60 |
+
examples=[
|
61 |
+
"Who is taller between John and Mary?",
|
62 |
+
"What is the capital of Vietnam and the largest city in Vietnam?",
|
63 |
+
]
|
64 |
+
)
|
65 |
+
|
66 |
+
# Launch the app
|
67 |
+
if __name__ == "__main__":
|
68 |
+
demo.launch()
|