import gradio as gr from llama_cpp import Llama MAX_TOKENS = 64 llm = Llama(model_path="ggml-model-f16-q4_0.bin", n_ctx=2048) def generate_text_instruct(input_text): response = "" txt2tag_prompt = f"You are a tool that helps tag danbooru images when given a textual image description. Provide me with danbooru tags that accurately fit the following description. {input_text}" for output in llm(f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {txt2tag_prompt} ASSISTANT: ", echo=False, stream=True, max_tokens=64, stop=["", "\n", "User:", ""]): answer = output['choices'][0]['text'] response += answer yield response instruct_interface = gr.Interface( fn=generate_text_instruct, inputs=gr.inputs.Textbox(lines= 10, label="Enter your image description"), outputs=gr.outputs.Textbox(label="danbooru tags"), ) with gr.Blocks() as demo: with gr.Tab("Instruct"): gr.Markdown("# GGML Spaces Instruct Demo") instruct_interface.render() demo.queue(max_size=16, concurrency_count=1).launch(debug=True)