File size: 6,835 Bytes
3e4e311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4007ae1
3e4e311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import gradio as gr
from musiclang_predict import MusicLangPredictor
import random
import subprocess
import os
import torchaudio
import torch
import numpy as np
from audiocraft.models import MusicGen
from audiocraft.data.audio import audio_write
from pydub import AudioSegment

# Utility Functions
def peak_normalize(y, target_peak=0.97):
    return target_peak * (y / np.max(np.abs(y)))

def rms_normalize(y, target_rms=0.05):
    return y * (target_rms / np.sqrt(np.mean(y**2)))

def preprocess_audio(waveform):
    waveform_np = waveform.cpu().squeeze().numpy()  # Move to CPU before converting to NumPy
    processed_waveform_np = rms_normalize(peak_normalize(waveform_np))
    return torch.from_numpy(processed_waveform_np).unsqueeze(0).to(device)

def create_slices(song, sr, slice_duration, bpm, num_slices=5):
    song_length = song.shape[-1] / sr
    slices = []
    
    # Ensure the first slice is from the beginning of the song
    first_slice_waveform = song[..., :int(slice_duration * sr)]
    slices.append(first_slice_waveform)
    
    for i in range(1, num_slices):
        random_start = random.choice(range(int(slice_duration * sr), int(song_length * sr), int(4 * 60 / bpm * sr)))
        slice_end = random_start + int(slice_duration * sr)
        
        if slice_end > song_length * sr:
            # Wrap around to the beginning of the song
            remaining_samples = int(slice_end - song_length * sr)
            slice_waveform = torch.cat([song[..., random_start:], song[..., :remaining_samples]], dim=-1)
        else:
            slice_waveform = song[..., random_start:slice_end]
        
        if len(slice_waveform.squeeze()) < int(slice_duration * sr):
            additional_samples_needed = int(slice_duration * sr) - len(slice_waveform.squeeze())
            slice_waveform = torch.cat([slice_waveform, song[..., :additional_samples_needed]], dim=-1)
        
        slices.append(slice_waveform)
        
    return slices

def calculate_duration(bpm, min_duration=29, max_duration=30):
    single_bar_duration = 4 * 60 / bpm
    bars = max(min_duration // single_bar_duration, 1)
    
    while single_bar_duration * bars < min_duration:
        bars += 1
    
    duration = single_bar_duration * bars
    
    while duration > max_duration and bars > 1:
        bars -= 1
        duration = single_bar_duration * bars
    
    return duration

def generate_music(seed, use_chords, chord_progression, prompt_duration, musicgen_model, num_iterations, bpm):
    if seed == "":
        seed = random.randint(1, 10000)

    ml = MusicLangPredictor('musiclang/musiclang-v2')

    try:
        seed = int(seed)
    except ValueError:
        seed = random.randint(1, 10000)

    nb_tokens = 2048
    temperature = 0.9
    top_p = 1.0

    if use_chords and chord_progression.strip():
        score = ml.predict_chords(
            chord_progression,
            time_signature=(4, 4),
            temperature=temperature,
            topp=top_p,
            rng_seed=seed
        )
    else:
        score = ml.predict(
            nb_tokens=nb_tokens,
            temperature=temperature,
            topp=top_p,
            rng_seed=seed
        )

    midi_filename = f"output_{seed}.mid"
    wav_filename = midi_filename.replace(".mid", ".wav")

    score.to_midi(midi_filename, tempo=bpm, time_signature=(4, 4))

    subprocess.run(["fluidsynth", "-ni", "font.sf2", midi_filename, "-F", wav_filename, "-r", "44100"])

    # Load the generated audio
    song, sr = torchaudio.load(wav_filename)
    song = song.to(device)

    # Use the user-provided BPM value for duration calculation
    duration = calculate_duration(bpm)

    # Create slices from the song using the user-provided BPM value
    slices = create_slices(song, sr, 35, bpm, num_slices=5)

    # Load the model
    model_continue = MusicGen.get_pretrained(musicgen_model)

    # Setting generation parameters
    model_continue.set_generation_params(
        use_sampling=True,
        top_k=250,
        top_p=0.0,
        temperature=1.0,
        duration=duration,
        cfg_coef=3
    )

    all_audio_files = []

    for i in range(num_iterations):
        slice_idx = i % len(slices)
        
        print(f"Running iteration {i + 1} using slice {slice_idx}...")
        
        prompt_waveform = slices[slice_idx][..., :int(prompt_duration * sr)]
        prompt_waveform = preprocess_audio(prompt_waveform)
        
        output = model_continue.generate_continuation(prompt_waveform, prompt_sample_rate=sr, progress=True)
        output = output.cpu()  # Move the output tensor back to CPU
        
        # Make sure the output tensor has at most 2 dimensions
        if len(output.size()) > 2:
            output = output.squeeze()
        
        filename_without_extension = f'continue_{i}'
        filename_with_extension = f'{filename_without_extension}.wav'
        
        audio_write(filename_with_extension, output, model_continue.sample_rate, strategy="loudness", loudness_compressor=True)
        all_audio_files.append(f'{filename_without_extension}.wav.wav')  # Assuming the library appends an extra .wav

    # Combine all audio files
    combined_audio = AudioSegment.empty()
    for filename in all_audio_files:
        combined_audio += AudioSegment.from_wav(filename)

    combined_audio_filename = f"combined_audio_{seed}.mp3"
    combined_audio.export(combined_audio_filename, format="mp3")

    # Clean up temporary files
    os.remove(midi_filename)
    os.remove(wav_filename)
    for filename in all_audio_files:
        os.remove(filename)

    return combined_audio_filename

# Check if CUDA is available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

iface = gr.Interface(
    fn=generate_music,
    inputs=[
        gr.Textbox(label="Seed (leave blank for random)", value=""),
        gr.Checkbox(label="Control Chord Progression", value=False),
        gr.Textbox(label="Chord Progression (e.g., Am CM Dm E7 Am)", visible=True),
        gr.Dropdown(label="Prompt Duration (seconds)", choices=list(range(1, 11)), value=7),
        gr.Textbox(label="MusicGen Model", value="thepatch/vanya_ai_dnb_0.1"),
        gr.Slider(label="Number of Iterations", minimum=1, maximum=10, step=1, value=3),
        gr.Slider(label="BPM", minimum=60, maximum=200, step=1, value=140)
    ],
    outputs=gr.Audio(label="Generated Music"),
    title="Music Generation Slot Machine",
    description="Enter a seed to generate music or leave blank for a random tune! Optionally, control the chord progression, prompt duration, MusicGen model, number of iterations, and BPM."
)

iface.launch()