import gradio as gr from musiclang_predict import MusicLangPredictor import random import subprocess import os import torchaudio import torch import numpy as np from audiocraft.models import MusicGen from audiocraft.data.audio import audio_write from pydub import AudioSegment # Utility Functions def peak_normalize(y, target_peak=0.97): return target_peak * (y / np.max(np.abs(y))) def rms_normalize(y, target_rms=0.05): return y * (target_rms / np.sqrt(np.mean(y**2))) def preprocess_audio(waveform): waveform_np = waveform.cpu().squeeze().numpy() # Move to CPU before converting to NumPy processed_waveform_np = rms_normalize(peak_normalize(waveform_np)) return torch.from_numpy(processed_waveform_np).unsqueeze(0).to(device) def create_slices(song, sr, slice_duration, bpm, num_slices=5): song_length = song.shape[-1] / sr slices = [] # Ensure the first slice is from the beginning of the song first_slice_waveform = song[..., :int(slice_duration * sr)] slices.append(first_slice_waveform) for i in range(1, num_slices): random_start = random.choice(range(int(slice_duration * sr), int(song_length * sr), int(4 * 60 / bpm * sr))) slice_end = random_start + int(slice_duration * sr) if slice_end > song_length * sr: # Wrap around to the beginning of the song remaining_samples = int(slice_end - song_length * sr) slice_waveform = torch.cat([song[..., random_start:], song[..., :remaining_samples]], dim=-1) else: slice_waveform = song[..., random_start:slice_end] if len(slice_waveform.squeeze()) < int(slice_duration * sr): additional_samples_needed = int(slice_duration * sr) - len(slice_waveform.squeeze()) slice_waveform = torch.cat([slice_waveform, song[..., :additional_samples_needed]], dim=-1) slices.append(slice_waveform) return slices def calculate_duration(bpm, min_duration=29, max_duration=30): single_bar_duration = 4 * 60 / bpm bars = max(min_duration // single_bar_duration, 1) while single_bar_duration * bars < min_duration: bars += 1 duration = single_bar_duration * bars while duration > max_duration and bars > 1: bars -= 1 duration = single_bar_duration * bars return duration def generate_music(seed, use_chords, chord_progression, prompt_duration, musicgen_model, num_iterations, bpm): if seed == "": seed = random.randint(1, 10000) ml = MusicLangPredictor('musiclang/musiclang-v2') try: seed = int(seed) except ValueError: seed = random.randint(1, 10000) nb_tokens = 2048 temperature = 0.9 top_p = 1.0 if use_chords and chord_progression.strip(): score = ml.predict_chords( chord_progression, time_signature=(4, 4), temperature=temperature, topp=top_p, rng_seed=seed ) else: score = ml.predict( nb_tokens=nb_tokens, temperature=temperature, topp=top_p, rng_seed=seed ) midi_filename = f"output_{seed}.mid" wav_filename = midi_filename.replace(".mid", ".wav") score.to_midi(midi_filename, tempo=bpm, time_signature=(4, 4)) subprocess.run(["fluidsynth", "-ni", "font.sf2", midi_filename, "-F", wav_filename, "-r", "44100"]) # Load the generated audio song, sr = torchaudio.load(wav_filename) song = song.to(device) # Use the user-provided BPM value for duration calculation duration = calculate_duration(bpm) # Create slices from the song using the user-provided BPM value slices = create_slices(song, sr, 35, bpm, num_slices=5) # Load the model model_continue = MusicGen.get_pretrained(musicgen_model) # Setting generation parameters model_continue.set_generation_params( use_sampling=True, top_k=250, top_p=0.0, temperature=1.0, duration=duration, cfg_coef=3 ) all_audio_files = [] for i in range(num_iterations): slice_idx = i % len(slices) print(f"Running iteration {i + 1} using slice {slice_idx}...") prompt_waveform = slices[slice_idx][..., :int(prompt_duration * sr)] prompt_waveform = preprocess_audio(prompt_waveform) output = model_continue.generate_continuation(prompt_waveform, prompt_sample_rate=sr, progress=True) output = output.cpu() # Move the output tensor back to CPU # Make sure the output tensor has at most 2 dimensions if len(output.size()) > 2: output = output.squeeze() filename_without_extension = f'continue_{i}' filename_with_extension = f'{filename_without_extension}.wav' audio_write(filename_with_extension, output, model_continue.sample_rate, strategy="loudness", loudness_compressor=True) all_audio_files.append(f'{filename_without_extension}.wav.wav') # Assuming the library appends an extra .wav # Combine all audio files combined_audio = AudioSegment.empty() for filename in all_audio_files: combined_audio += AudioSegment.from_wav(filename) combined_audio_filename = f"combined_audio_{seed}.mp3" combined_audio.export(combined_audio_filename, format="mp3") # Clean up temporary files os.remove(midi_filename) os.remove(wav_filename) for filename in all_audio_files: os.remove(filename) return combined_audio_filename # Check if CUDA is available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") iface = gr.Interface( fn=generate_music, inputs=[ gr.Textbox(label="Seed (leave blank for random)", value=""), gr.Checkbox(label="Control Chord Progression", value=False), gr.Textbox(label="Chord Progression (e.g., Am CM Dm E7 Am)", visible=True), gr.Dropdown(label="Prompt Duration (seconds)", choices=list(range(1, 11)), value=7), gr.Textbox(label="MusicGen Model", value="thepatch/vanya_ai_dnb_0.1"), gr.Slider(label="Number of Iterations", minimum=1, maximum=10, step=1, value=3), gr.Slider(label="BPM", minimum=60, maximum=200, step=1, value=140) ], outputs=gr.Audio(label="Generated Music"), title="Music Generation Slot Machine", description="Enter a seed to generate music or leave blank for a random tune! Optionally, control the chord progression, prompt duration, MusicGen model, number of iterations, and BPM." ) iface.launch()