import torch.nn as nn import torch class DenseResidualBlock(nn.Module): """ The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18) """ def __init__(self, filters, res_scale=0.2): super(DenseResidualBlock, self).__init__() self.res_scale = res_scale def block(in_features, non_linearity=True): layers = [nn.Conv2d(in_features, filters, 3, 1, 1, bias=True)] if non_linearity: layers += [nn.LeakyReLU()] return nn.Sequential(*layers) self.b1 = block(in_features=1 * filters) self.b2 = block(in_features=2 * filters) self.b3 = block(in_features=3 * filters) self.b4 = block(in_features=4 * filters) self.b5 = block(in_features=5 * filters, non_linearity=False) self.blocks = [self.b1, self.b2, self.b3, self.b4, self.b5] def forward(self, x): inputs = x for block in self.blocks: out = block(inputs) inputs = torch.cat([inputs, out], 1) return out.mul(self.res_scale) + x class ResidualInResidualDenseBlock(nn.Module): def __init__(self, filters, res_scale=0.2): super(ResidualInResidualDenseBlock, self).__init__() self.res_scale = res_scale self.dense_blocks = nn.Sequential( DenseResidualBlock(filters), DenseResidualBlock(filters), DenseResidualBlock(filters) ) def forward(self, x): return self.dense_blocks(x).mul(self.res_scale) + x class GeneratorRRDB(nn.Module): def __init__(self, channels, filters=64, num_res_blocks=16, num_upsample=2): super(GeneratorRRDB, self).__init__() # First layer self.conv1 = nn.Conv2d(channels, filters, kernel_size=3, stride=1, padding=1) # Residual blocks self.res_blocks = nn.Sequential(*[ResidualInResidualDenseBlock(filters) for _ in range(num_res_blocks)]) # Second conv layer post residual blocks self.conv2 = nn.Conv2d(filters, filters, kernel_size=3, stride=1, padding=1) # Upsampling layers upsample_layers = [] for _ in range(num_upsample): upsample_layers += [ nn.Conv2d(filters, filters * 4, kernel_size=3, stride=1, padding=1), nn.LeakyReLU(), nn.PixelShuffle(upscale_factor=2), ] self.upsampling = nn.Sequential(*upsample_layers) # Final output block self.conv3 = nn.Sequential( nn.Conv2d(filters, filters, kernel_size=3, stride=1, padding=1), nn.LeakyReLU(), nn.Conv2d(filters, channels, kernel_size=3, stride=1, padding=1), ) def forward(self, x): out1 = self.conv1(x) out = self.res_blocks(out1) out2 = self.conv2(out) out = torch.add(out1, out2) out = self.upsampling(out) out = self.conv3(out) return out