Spaces:
Sleeping
Sleeping
import os | |
import uuid | |
import base64 | |
import requests | |
from PIL import Image | |
from io import BytesIO | |
from pathlib import Path | |
import gradio as gr | |
from gradio_imageslider import ImageSlider # Ensure this library is installed | |
from dotenv import load_dotenv | |
import config | |
# Load environment variables from the .env file | |
load_dotenv() | |
# Get API key from environment variable | |
api_key = os.getenv('API_KEY') | |
# Funzione per chiamare l'endpoint di predizione FastAPI | |
def process_image(input_image_editor): | |
input_image = input_image_editor['background'] | |
mask_image = input_image_editor['layers'][0] | |
# Converti le immagini in base64 | |
buffered_input = BytesIO() | |
input_image.save(buffered_input, format="PNG") | |
input_image_base64 = base64.b64encode(buffered_input.getvalue()).decode() | |
buffered_mask = BytesIO() | |
mask_image.save(buffered_mask, format="PNG") | |
mask_image_base64 = base64.b64encode(buffered_mask.getvalue()).decode() | |
# Prepara il payload per la richiesta POST | |
payload = { | |
"input_image_editor": { | |
"background": input_image_base64, | |
"layers": [mask_image_base64] | |
} | |
} | |
# Effettua la richiesta POST al backend FastAPI | |
response = requests.post( | |
os.getenv('BACKEND_URL') + "/predict/", | |
headers={"access_token": api_key}, | |
json=payload | |
) | |
if response.status_code == 200: | |
result = response.json() | |
processed_image_base64 = result['processed_image'] | |
processed_image = Image.open(BytesIO(base64.b64decode(processed_image_base64))) | |
# Save the processed image | |
output_folder = Path("output") # Make sure this folder exists or create it | |
output_folder.mkdir(parents=True, exist_ok=True) | |
image_path = output_folder / f"no_bg_image_{uuid.uuid4().hex}.png" | |
processed_image.save(image_path) | |
return (processed_image, input_image), str(image_path) | |
else: | |
raise Exception(f"Request failed with status code {response.status_code}") | |
# Define inputs and outputs for the Gradio interface | |
image = gr.ImageEditor( | |
label='Image', | |
type='pil', | |
sources=["upload", "webcam"], | |
image_mode='RGB', | |
layers=False, | |
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed") | |
) | |
output_slider = ImageSlider(label="Processed photo", type="pil") | |
demo = gr.Interface( | |
fn=process_image, | |
inputs=image, | |
outputs=[output_slider, gr.File(label="output png file")], | |
title="🫧 Snap Clean 🧽", | |
description=config.DESCRIPTION, | |
article=config.BUY_ME_A_COFFE | |
) | |
#Center the title and description using custom CSS | |
demo.css = """ | |
.interface-title { | |
text-align: center; | |
} | |
.interface-description { | |
text-align: center; | |
} | |
""" | |
demo.launch(debug=False, show_error=True, share=True) |