Spaces:
Sleeping
Sleeping
File size: 1,643 Bytes
ac1586c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import gradio as gr
import requests
import base64
import os
from PIL import Image
from io import BytesIO
import numpy as np
from gradio_imageslider import ImageSlider # Assicurati di avere questa libreria installata
from loadimg import load_img # Assicurati che questa funzione sia disponibile
def numpy_to_pil(image):
"""Convert a numpy array to a PIL Image."""
if image.dtype == np.uint8: # Most common case
mode = "RGB"
else:
mode = "F" # Floating point
return Image.fromarray(image.astype('uint8'), mode)
def process_image(image):
image = numpy_to_pil(image) # Convert numpy array to PIL Image
buffered = BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
response = requests.post(
os.getenv('BACKEND_URL'),
files={"file": ("image.png", base64.b64decode(img_str), "image/png")}
)
result = response.json()
processed_image_b64 = result["processed_image"]
processed_image = Image.open(BytesIO(base64.b64decode(processed_image_b64)))
return [image, processed_image] # Return the original and processed images
# Carica l'esempio di immagine
chameleon = load_img("elephant.jpg", output_type="pil")
url = "http://farm9.staticflickr.com/8488/8228323072_76eeddfea3_z.jpg"
image = gr.Image(label="Upload a photo")
output_slider = ImageSlider(label="Processed photo", type="pil")
demo = gr.Interface(
fn=process_image,
inputs=image,
outputs=output_slider,
title="Magic Eraser",
examples=[["elephant.jpg"]] # Esempio locale
)
if __name__ == "__main__":
demo.launch() |