Spaces:
Running
Running
sab
commited on
Commit
·
434b792
1
Parent(s):
6fc8f2e
test
Browse files- app.py +9 -44
- app_bck.py +54 -0
app.py
CHANGED
@@ -1,54 +1,19 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import requests
|
3 |
-
import base64
|
4 |
import os
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
from gradio_imageslider import ImageSlider # Assicurati di avere questa libreria installata
|
9 |
from loadimg import load_img # Assicurati che questa funzione sia disponibile
|
10 |
|
11 |
from dotenv import load_dotenv
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
def numpy_to_pil(image):
|
17 |
-
"""Convert a numpy array to a PIL Image."""
|
18 |
-
if image.dtype == np.uint8: # Most common case
|
19 |
-
mode = "RGB"
|
20 |
-
else:
|
21 |
-
mode = "F" # Floating point
|
22 |
-
return Image.fromarray(image.astype('uint8'), mode)
|
23 |
-
|
24 |
-
|
25 |
-
def process_image(image):
|
26 |
-
image = numpy_to_pil(image) # Convert numpy array to PIL Image
|
27 |
-
buffered = BytesIO()
|
28 |
-
image.save(buffered, format="PNG")
|
29 |
-
img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
30 |
-
response = requests.post(
|
31 |
-
os.getenv('BACKEND_URL'),
|
32 |
-
files={"file": ("image.png", base64.b64decode(img_str), "image/png")}
|
33 |
-
)
|
34 |
-
result = response.json()
|
35 |
-
processed_image_b64 = result["processed_image"]
|
36 |
-
processed_image = Image.open(BytesIO(base64.b64decode(processed_image_b64)))
|
37 |
-
return [image, processed_image] # Return the original and processed images
|
38 |
-
|
39 |
-
|
40 |
-
# Carica l'esempio di immagine
|
41 |
-
chameleon = load_img("elephant.jpg", output_type="pil")
|
42 |
|
43 |
-
image = gr.Image(label="Upload a photo")
|
44 |
-
output_slider = ImageSlider(label="Processed photo", type="pil")
|
45 |
demo = gr.Interface(
|
46 |
-
fn=
|
47 |
-
inputs=
|
48 |
-
outputs=
|
49 |
-
title="Magic Eraser",
|
50 |
-
examples=[["elephant.jpg"]] # Esempio locale
|
51 |
)
|
52 |
|
53 |
-
|
54 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import gradio as gr
|
3 |
+
os.getenv('BACKEND_URL')
|
4 |
+
|
5 |
from gradio_imageslider import ImageSlider # Assicurati di avere questa libreria installata
|
6 |
from loadimg import load_img # Assicurati che questa funzione sia disponibile
|
7 |
|
8 |
from dotenv import load_dotenv
|
9 |
|
10 |
+
def greet(name, intensity):
|
11 |
+
return "Hello, " + name + "!" * int(intensity)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
|
|
|
|
13 |
demo = gr.Interface(
|
14 |
+
fn=greet,
|
15 |
+
inputs=["text", "slider"],
|
16 |
+
outputs=["text"],
|
|
|
|
|
17 |
)
|
18 |
|
19 |
+
demo.launch()
|
|
app_bck.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import requests
|
3 |
+
import base64
|
4 |
+
import os
|
5 |
+
from PIL import Image
|
6 |
+
from io import BytesIO
|
7 |
+
import numpy as np
|
8 |
+
from gradio_imageslider import ImageSlider # Assicurati di avere questa libreria installata
|
9 |
+
from loadimg import load_img # Assicurati che questa funzione sia disponibile
|
10 |
+
|
11 |
+
from dotenv import load_dotenv
|
12 |
+
|
13 |
+
# Carica le variabili di ambiente dal file .env
|
14 |
+
load_dotenv()
|
15 |
+
|
16 |
+
def numpy_to_pil(image):
|
17 |
+
"""Convert a numpy array to a PIL Image."""
|
18 |
+
if image.dtype == np.uint8: # Most common case
|
19 |
+
mode = "RGB"
|
20 |
+
else:
|
21 |
+
mode = "F" # Floating point
|
22 |
+
return Image.fromarray(image.astype('uint8'), mode)
|
23 |
+
|
24 |
+
|
25 |
+
def process_image(image):
|
26 |
+
image = numpy_to_pil(image) # Convert numpy array to PIL Image
|
27 |
+
buffered = BytesIO()
|
28 |
+
image.save(buffered, format="PNG")
|
29 |
+
img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
30 |
+
response = requests.post(
|
31 |
+
os.getenv('BACKEND_URL'),
|
32 |
+
files={"file": ("image.png", base64.b64decode(img_str), "image/png")}
|
33 |
+
)
|
34 |
+
result = response.json()
|
35 |
+
processed_image_b64 = result["processed_image"]
|
36 |
+
processed_image = Image.open(BytesIO(base64.b64decode(processed_image_b64)))
|
37 |
+
return [image, processed_image] # Return the original and processed images
|
38 |
+
|
39 |
+
|
40 |
+
# Carica l'esempio di immagine
|
41 |
+
chameleon = load_img("elephant.jpg", output_type="pil")
|
42 |
+
|
43 |
+
image = gr.Image(label="Upload a photo")
|
44 |
+
output_slider = ImageSlider(label="Processed photo", type="pil")
|
45 |
+
demo = gr.Interface(
|
46 |
+
fn=process_image,
|
47 |
+
inputs=image,
|
48 |
+
outputs=output_slider,
|
49 |
+
title="Magic Eraser",
|
50 |
+
examples=[["elephant.jpg"]] # Esempio locale
|
51 |
+
)
|
52 |
+
|
53 |
+
if __name__ == "__main__":
|
54 |
+
demo.launch()
|