Spaces:
Running
Running
sab
commited on
Commit
·
6f989dc
1
Parent(s):
fffabea
test
Browse files
app.py
CHANGED
@@ -1,48 +1,28 @@
|
|
1 |
-
import os
|
2 |
import gradio as gr
|
3 |
-
from gradio_imageslider import ImageSlider
|
4 |
-
from loadimg import load_img
|
5 |
-
|
6 |
import requests
|
7 |
import base64
|
|
|
8 |
from PIL import Image
|
9 |
from io import BytesIO
|
10 |
import numpy as np
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
if not os.path.exists(output_folder):
|
14 |
-
os.makedirs(output_folder)
|
15 |
-
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
im = im.convert("RGB")
|
20 |
-
origin = im.copy()
|
21 |
-
image = process(im)
|
22 |
-
image_path = os.path.join(output_folder, "no_bg_image.png")
|
23 |
-
image.save(image_path)
|
24 |
-
return (image, origin), image_path
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
def process(image):
|
28 |
-
def numpy_to_pil(image):
|
29 |
-
"""Convert a numpy array to a PIL Image."""
|
30 |
-
if not isinstance(image, np.ndarray):
|
31 |
-
print(f"Type of input: {type(image)}")
|
32 |
-
raise TypeError("Input must be a numpy array")
|
33 |
-
|
34 |
-
# Determine the mode based on the shape and dtype of the image
|
35 |
-
if image.ndim == 2: # Grayscale image
|
36 |
-
mode = "L"
|
37 |
-
elif image.ndim == 3 and image.shape[2] == 3: # RGB image
|
38 |
-
mode = "RGB"
|
39 |
-
elif image.ndim == 3 and image.shape[2] == 4: # RGBA image
|
40 |
-
mode = "RGBA"
|
41 |
-
else:
|
42 |
-
raise ValueError("Unsupported image shape: {}".format(image.shape))
|
43 |
-
|
44 |
-
return Image.fromarray(image, mode)
|
45 |
|
|
|
46 |
image = numpy_to_pil(image) # Convert numpy array to PIL Image
|
47 |
buffered = BytesIO()
|
48 |
image.save(buffered, format="PNG")
|
@@ -54,40 +34,21 @@ def process(image):
|
|
54 |
result = response.json()
|
55 |
processed_image_b64 = result["processed_image"]
|
56 |
processed_image = Image.open(BytesIO(base64.b64decode(processed_image_b64)))
|
57 |
-
return processed_image # Return the original and processed images
|
58 |
-
|
59 |
|
60 |
-
def process_file(f):
|
61 |
-
name_path = f.rsplit(".", 1)[0] + ".png"
|
62 |
-
im = load_img(f, output_type="pil")
|
63 |
-
im = im.convert("RGB")
|
64 |
-
transparent = process(im)
|
65 |
-
transparent.save(name_path)
|
66 |
-
return name_path
|
67 |
-
|
68 |
-
|
69 |
-
slider1 = ImageSlider(label="RMBG-2.0", type="pil")
|
70 |
-
slider2 = ImageSlider(label="RMBG-2.0", type="pil")
|
71 |
-
image = gr.Image(label="Upload an image")
|
72 |
-
image2 = gr.Image(label="Upload an image", type="filepath")
|
73 |
-
text = gr.Textbox(label="Paste an image URL")
|
74 |
-
png_file = gr.File(label="output png file")
|
75 |
|
|
|
76 |
chameleon = load_img("elephant.jpg", output_type="pil")
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
fn
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
tab3 = gr.Interface(process_file, inputs=image2, outputs=png_file, examples=["elephant.jpg"], api_name="png")
|
87 |
-
|
88 |
-
demo = gr.TabbedInterface(
|
89 |
-
[tab1, tab2], ["input image", "input url"], title=" background removal"
|
90 |
)
|
91 |
|
92 |
if __name__ == "__main__":
|
93 |
-
demo.launch(
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
import requests
|
3 |
import base64
|
4 |
+
import os
|
5 |
from PIL import Image
|
6 |
from io import BytesIO
|
7 |
import numpy as np
|
8 |
+
from gradio_imageslider import ImageSlider # Assicurati di avere questa libreria installata
|
9 |
+
from loadimg import load_img # Assicurati che questa funzione sia disponibile
|
10 |
|
11 |
+
from dotenv import load_dotenv
|
|
|
|
|
|
|
12 |
|
13 |
+
# Carica le variabili di ambiente dal file .env
|
14 |
+
load_dotenv()
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
def numpy_to_pil(image):
|
17 |
+
"""Convert a numpy array to a PIL Image."""
|
18 |
+
if image.dtype == np.uint8: # Most common case
|
19 |
+
mode = "RGB"
|
20 |
+
else:
|
21 |
+
mode = "F" # Floating point
|
22 |
+
return Image.fromarray(image.astype('uint8'), mode)
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
def process_image(image):
|
26 |
image = numpy_to_pil(image) # Convert numpy array to PIL Image
|
27 |
buffered = BytesIO()
|
28 |
image.save(buffered, format="PNG")
|
|
|
34 |
result = response.json()
|
35 |
processed_image_b64 = result["processed_image"]
|
36 |
processed_image = Image.open(BytesIO(base64.b64decode(processed_image_b64)))
|
37 |
+
return [image, processed_image] # Return the original and processed images
|
|
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
# Carica l'esempio di immagine
|
41 |
chameleon = load_img("elephant.jpg", output_type="pil")
|
42 |
|
43 |
+
image = gr.Image(label="Upload a photo")
|
44 |
+
output_slider = ImageSlider(label="Processed photo", type="pil")
|
45 |
+
demo = gr.Interface(
|
46 |
+
fn=process_image,
|
47 |
+
inputs=image,
|
48 |
+
outputs=output_slider,
|
49 |
+
title="Magic Eraser",
|
50 |
+
examples=[["elephant.jpg"]] # Esempio locale
|
|
|
|
|
|
|
|
|
51 |
)
|
52 |
|
53 |
if __name__ == "__main__":
|
54 |
+
demo.launch()
|