Spaces:
Running
Running
sab
commited on
Commit
·
966325b
1
Parent(s):
c3839fc
test with flux
Browse files
app_v2.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import random
|
4 |
+
import spaces
|
5 |
+
import torch
|
6 |
+
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
|
7 |
+
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
8 |
+
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
9 |
+
import requests
|
10 |
+
import base64
|
11 |
+
import os
|
12 |
+
from PIL import Image
|
13 |
+
from io import BytesIO
|
14 |
+
from gradio_imageslider import ImageSlider # Assicurati di avere questa libreria installata
|
15 |
+
from loadimg import load_img # Assicurati che questa funzione sia disponibile
|
16 |
+
from dotenv import load_dotenv
|
17 |
+
|
18 |
+
# Carica le variabili di ambiente dal file .env
|
19 |
+
load_dotenv()
|
20 |
+
|
21 |
+
dtype = torch.bfloat16
|
22 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
23 |
+
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
24 |
+
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
|
25 |
+
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
|
26 |
+
torch.cuda.empty_cache()
|
27 |
+
|
28 |
+
MAX_SEED = np.iinfo(np.int32).max
|
29 |
+
MAX_IMAGE_SIZE = 2048
|
30 |
+
|
31 |
+
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
32 |
+
|
33 |
+
output_folder = 'output_images'
|
34 |
+
if not os.path.exists(output_folder):
|
35 |
+
os.makedirs(output_folder)
|
36 |
+
|
37 |
+
|
38 |
+
def numpy_to_pil(image):
|
39 |
+
"""Convert a numpy array to a PIL Image."""
|
40 |
+
if image.dtype == np.uint8: # Most common case
|
41 |
+
mode = "RGB"
|
42 |
+
else:
|
43 |
+
mode = "F" # Floating point
|
44 |
+
return Image.fromarray(image.astype('uint8'), mode)
|
45 |
+
|
46 |
+
|
47 |
+
def process_image(image):
|
48 |
+
image = numpy_to_pil(image) # Convert numpy array to PIL Image
|
49 |
+
buffered = BytesIO()
|
50 |
+
image.save(buffered, format="PNG")
|
51 |
+
img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
52 |
+
response = requests.post(
|
53 |
+
os.getenv('BACKEND_URL'),
|
54 |
+
files={"file": ("image.png", base64.b64decode(img_str), "image/png")}
|
55 |
+
)
|
56 |
+
result = response.json()
|
57 |
+
processed_image_b64 = result["processed_image"]
|
58 |
+
processed_image = Image.open(BytesIO(base64.b64decode(processed_image_b64)))
|
59 |
+
image_path = os.path.join(output_folder, "no_bg_image.png")
|
60 |
+
processed_image.save(image_path)
|
61 |
+
return (processed_image, image), image_path
|
62 |
+
|
63 |
+
|
64 |
+
@spaces.GPU(duration=75)
|
65 |
+
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28,
|
66 |
+
progress=gr.Progress(track_tqdm=True)):
|
67 |
+
if randomize_seed:
|
68 |
+
seed = random.randint(0, MAX_SEED)
|
69 |
+
generator = torch.Generator().manual_seed(seed)
|
70 |
+
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
71 |
+
prompt=prompt,
|
72 |
+
guidance_scale=guidance_scale,
|
73 |
+
num_inference_steps=num_inference_steps,
|
74 |
+
width=width,
|
75 |
+
height=height,
|
76 |
+
generator=generator,
|
77 |
+
output_type="pil",
|
78 |
+
good_vae=good_vae,
|
79 |
+
):
|
80 |
+
img_np = np.array(img)
|
81 |
+
processed_images, image_path = process_image(img_np)
|
82 |
+
yield processed_images[0], seed, processed_images[1], image_path
|
83 |
+
|
84 |
+
|
85 |
+
examples = [
|
86 |
+
"a tiny astronaut hatching from an egg on the moon",
|
87 |
+
"a cat holding a sign that says hello world",
|
88 |
+
"an anime illustration of a wiener schnitzel",
|
89 |
+
]
|
90 |
+
|
91 |
+
css = """
|
92 |
+
#col-container {
|
93 |
+
margin: 0 auto;
|
94 |
+
max-width: 520px;
|
95 |
+
}
|
96 |
+
"""
|
97 |
+
|
98 |
+
with gr.Blocks(css=css) as demo:
|
99 |
+
with gr.Column(elem_id="col-container"):
|
100 |
+
gr.Markdown(f"""# FLUX.1 [dev]
|
101 |
+
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
|
102 |
+
""")
|
103 |
+
with gr.Row():
|
104 |
+
prompt = gr.Text(
|
105 |
+
label="Prompt",
|
106 |
+
show_label=False,
|
107 |
+
max_lines=1,
|
108 |
+
placeholder="Enter your prompt",
|
109 |
+
container=False,
|
110 |
+
)
|
111 |
+
run_button = gr.Button("Run", scale=0)
|
112 |
+
result = gr.Image(label="Generated Image", show_label=False)
|
113 |
+
output_slider = ImageSlider(label="Processed Photo", type="pil")
|
114 |
+
output_file = gr.File(label="Output PNG file")
|
115 |
+
with gr.Accordion("Advanced Settings", open=False):
|
116 |
+
seed = gr.Slider(
|
117 |
+
label="Seed",
|
118 |
+
minimum=0,
|
119 |
+
maximum=MAX_SEED,
|
120 |
+
step=1,
|
121 |
+
value=0,
|
122 |
+
)
|
123 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
124 |
+
with gr.Row():
|
125 |
+
width = gr.Slider(
|
126 |
+
label="Width",
|
127 |
+
minimum=256,
|
128 |
+
maximum=MAX_IMAGE_SIZE,
|
129 |
+
step=32,
|
130 |
+
value=1024,
|
131 |
+
)
|
132 |
+
height = gr.Slider(
|
133 |
+
label="Height",
|
134 |
+
minimum=256,
|
135 |
+
maximum=MAX_IMAGE_SIZE,
|
136 |
+
step=32,
|
137 |
+
value=1024,
|
138 |
+
)
|
139 |
+
with gr.Row():
|
140 |
+
guidance_scale = gr.Slider(
|
141 |
+
label="Guidance Scale",
|
142 |
+
minimum=1,
|
143 |
+
maximum=15,
|
144 |
+
step=0.1,
|
145 |
+
value=3.5,
|
146 |
+
)
|
147 |
+
num_inference_steps = gr.Slider(
|
148 |
+
label="Number of inference steps",
|
149 |
+
minimum=1,
|
150 |
+
maximum=50,
|
151 |
+
step=1,
|
152 |
+
value=28,
|
153 |
+
)
|
154 |
+
gr.Examples(
|
155 |
+
examples=examples,
|
156 |
+
fn=infer,
|
157 |
+
inputs=[prompt],
|
158 |
+
outputs=[result, seed, output_slider, output_file],
|
159 |
+
cache_examples="lazy"
|
160 |
+
)
|
161 |
+
gr.on(
|
162 |
+
triggers=[run_button.click, prompt.submit],
|
163 |
+
fn=infer,
|
164 |
+
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
165 |
+
outputs=[result, seed, output_slider, output_file]
|
166 |
+
)
|
167 |
+
demo.launch()
|