import gradio as gr import numpy as np import random import spaces import torch from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images import requests import base64 import os from PIL import Image from io import BytesIO from gradio_imageslider import ImageSlider # Assicurati di avere questa libreria installata from loadimg import load_img # Assicurati che questa funzione sia disponibile from dotenv import load_dotenv # Carica le variabili di ambiente dal file .env load_dotenv() dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device) pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device) torch.cuda.empty_cache() MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) output_folder = 'output_images' if not os.path.exists(output_folder): os.makedirs(output_folder) def numpy_to_pil(image): """Convert a numpy array to a PIL Image.""" if image.dtype == np.uint8: # Most common case mode = "RGB" else: mode = "F" # Floating point return Image.fromarray(image.astype('uint8'), mode) def process_image(image): image = numpy_to_pil(image) # Convert numpy array to PIL Image buffered = BytesIO() image.save(buffered, format="PNG") img_str = base64.b64encode(buffered.getvalue()).decode('utf-8') response = requests.post( os.getenv('BACKEND_URL'), files={"file": ("image.png", base64.b64decode(img_str), "image/png")} ) result = response.json() processed_image_b64 = result["processed_image"] processed_image = Image.open(BytesIO(base64.b64decode(processed_image_b64))) image_path = os.path.join(output_folder, "no_bg_image.png") processed_image.save(image_path) return (processed_image, image), image_path @spaces.GPU(duration=75) def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( prompt=prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, output_type="pil", good_vae=good_vae, ): img_np = np.array(img) processed_images, image_path = process_image(img_np) yield processed_images[0], seed, processed_images[1], image_path examples = [ "a tiny astronaut hatching from an egg on the moon", "a cat holding a sign that says hello world", "an anime illustration of a wiener schnitzel", ] css = """ #col-container { margin: 0 auto; max-width: 520px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f"""# FLUX.1 [dev] 12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)] """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Generated Image", show_label=False) output_slider = ImageSlider(label="Processed Photo", type="pil") output_file = gr.File(label="Output PNG file") with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=28, ) gr.Examples( examples=examples, fn=infer, inputs=[prompt], outputs=[result, seed, output_slider, output_file], cache_examples="lazy" ) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs=[result, seed, output_slider, output_file] ) demo.launch()