import os from typing import Any, Optional, Tuple from langchain.chains import ConversationChain from langchain.llms import HuggingFaceHub from langchain.llms import OpenAI from threading import Lock def load_chain_openai(api_key: str): os.environ["OPENAI_API_KEY"] = api_key llm = OpenAI(temperature=0) chain = ConversationChain(llm=llm) os.environ["OPENAI_API_KEY"] = "" return chain def load_chain_falcon(api_key: str): os.environ["HUGGINGFACEHUB_API_TOKEN"] = api_key llm = HuggingFaceHub(repo_id="tiiuae/falcon-7b-instruct", model_kwargs={"temperature": 0.9}) chain = ConversationChain(llm=llm) os.environ["HUGGINGFACEHUB_API_TOKEN"] = "" return chain class ChatWrapper: def __init__(self, chain_type: str, api_key: str = ''): self.api_key = api_key self.chain_type = chain_type self.history = [] self.lock = Lock() if self.api_key: if chain_type == 'openai': self.chain = load_chain_openai(self.api_key) elif chain_type == 'falcon': self.chain = load_chain_falcon(self.api_key) else: raise ValueError(f'Invalid chain_type: {chain_type}') else: self.chain = None def __call__(self, inp: str): self.lock.acquire() try: if self.chain is None: self.history.append((inp, "Please add your API key to proceed.")) return self.history output = self.chain.run(input=inp) self.history.append((inp, output)) except Exception as e: self.history.append((inp, f"An error occurred: {e}")) finally: self.api_key = '' # API key is cleared after running each chain self.lock.release() return self.history