Thiago Hersan commited on
Commit
988ebda
Β·
1 Parent(s): 15a1214

adds app and dockerfile files

Browse files
.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ .DS_Store
2
+
Dockerfile ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.8.15
2
+
3
+ WORKDIR /code
4
+
5
+ COPY ./requirements.txt /code/requirements.txt
6
+
7
+ RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
8
+
9
+ COPY app.py /code/app.py
10
+ COPY examples /code/examples
11
+
12
+ CMD ["python", "app.py"]
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  title: Maskformer Satellite Trees Gradio Docker
3
- emoji: πŸ“ˆ
4
  colorFrom: pink
5
  colorTo: green
6
  sdk: docker
 
1
  ---
2
  title: Maskformer Satellite Trees Gradio Docker
3
+ emoji: πŸ›°πŸ³
4
  colorFrom: pink
5
  colorTo: green
6
  sdk: docker
app.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import glob
2
+ import gradio as gr
3
+ import numpy as np
4
+ from os import environ
5
+ from PIL import Image
6
+ from torchvision import transforms as T
7
+ from transformers import MaskFormerForInstanceSegmentation, MaskFormerImageProcessor
8
+
9
+
10
+ example_images = sorted(glob.glob('examples/map*.jpg'))
11
+
12
+ ade_mean=[0.485, 0.456, 0.406]
13
+ ade_std=[0.229, 0.224, 0.225]
14
+
15
+ test_transform = T.Compose([
16
+ T.ToTensor(),
17
+ T.Normalize(mean=ade_mean, std=ade_std)
18
+ ])
19
+
20
+ palette = [
21
+ [120, 120, 120], [4, 200, 4], [4, 4, 250], [6, 230, 230],
22
+ [80, 50, 50], [120, 120, 80], [140, 140, 140], [204, 5, 255]
23
+ ]
24
+
25
+ model_id = f"thiagohersan/maskformer-satellite-trees"
26
+ vegetation_labels = ["vegetation"]
27
+
28
+ # preprocessor = MaskFormerImageProcessor.from_pretrained(model_id)
29
+ preprocessor = MaskFormerImageProcessor(
30
+ do_resize=False,
31
+ do_normalize=False,
32
+ do_rescale=False,
33
+ ignore_index=255,
34
+ reduce_labels=False
35
+ )
36
+
37
+ hf_token = environ.get('HFTOKEN')
38
+ model = MaskFormerForInstanceSegmentation.from_pretrained(model_id, use_auth_token=hf_token)
39
+
40
+
41
+ def visualize_instance_seg_mask(img_in, mask, id2label, included_labels):
42
+ img_out = np.zeros((mask.shape[0], mask.shape[1], 3))
43
+ image_total_pixels = mask.shape[0] * mask.shape[1]
44
+ label_ids = np.unique(mask)
45
+
46
+ id2color = {id: palette[id] for id in label_ids}
47
+ id2count = {id: 0 for id in label_ids}
48
+
49
+ for i in range(img_out.shape[0]):
50
+ for j in range(img_out.shape[1]):
51
+ img_out[i, j, :] = id2color[mask[i, j]]
52
+ id2count[mask[i, j]] = id2count[mask[i, j]] + 1
53
+
54
+ image_res = (0.5 * img_in + 0.5 * img_out).astype(np.uint8)
55
+
56
+ dataframe = [[
57
+ f"{id2label[id]}",
58
+ f"{(100 * id2count[id] / image_total_pixels):.2f} %",
59
+ f"{np.sqrt(id2count[id] / image_total_pixels):.2f} m"
60
+ ] for id in label_ids if id2label[id] in included_labels]
61
+
62
+ if len(dataframe) < 1:
63
+ dataframe = [[
64
+ f"",
65
+ f"{(0):.2f} %",
66
+ f"{(0):.2f} m"
67
+ ]]
68
+
69
+ return image_res, dataframe
70
+
71
+
72
+ def query_image(image_path):
73
+ img = np.array(Image.open(image_path))
74
+ img_size = (img.shape[0], img.shape[1])
75
+ inputs = preprocessor(images=test_transform(img), return_tensors="pt")
76
+ outputs = model(**inputs)
77
+ results = preprocessor.post_process_semantic_segmentation(outputs=outputs, target_sizes=[img_size])[0]
78
+ mask_img, dataframe = visualize_instance_seg_mask(img, results.numpy(), model.config.id2label, vegetation_labels)
79
+ return mask_img, dataframe
80
+
81
+
82
+ demo = gr.Interface(
83
+ title="Maskformer Satellite+Trees",
84
+ description="Using a finetuned version of the [facebook/maskformer-swin-base-ade](https://huggingface.co/facebook/maskformer-swin-base-ade) model (created specifically to work with satellite images) to calculate percentage of pixels in an image that belong to vegetation.",
85
+
86
+ fn=query_image,
87
+ inputs=[gr.Image(type="filepath", label="Input Image")],
88
+ outputs=[
89
+ gr.Image(label="Vegetation"),
90
+ gr.DataFrame(label="Info", headers=["Object Label", "Pixel Percent", "Square Length"])
91
+ ],
92
+
93
+ examples=example_images,
94
+ cache_examples=True,
95
+
96
+ allow_flagging="never",
97
+ analytics_enabled=None
98
+ )
99
+
100
+ demo.launch(show_api=False)
examples/map-000.jpg ADDED
examples/map-010.jpg ADDED
examples/map-018.jpg ADDED
examples/map-114.jpg ADDED
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ gradio==3.16.2
2
+ Pillow==9.4.0
3
+ scipy==1.9.3
4
+ torch==1.13.1
5
+ torchvision==0.14.1
6
+ transformers==4.25.1