File size: 4,524 Bytes
9becae6
 
 
 
 
 
 
 
 
 
4e3cfa9
9becae6
 
 
 
 
 
 
 
 
 
 
 
 
 
a71ecc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9becae6
 
 
 
 
 
 
 
 
 
 
 
 
 
a71ecc9
9becae6
 
4e3cfa9
 
9becae6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a71ecc9
9becae6
 
 
 
 
 
 
 
a71ecc9
9becae6
 
 
 
 
a71ecc9
9becae6
 
 
 
 
 
 
 
 
 
 
 
 
a71ecc9
9becae6
 
 
 
a71ecc9
9becae6
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import gradio as gr\n",
    "import numpy as np\n",
    "from os import environ\n",
    "from PIL import Image as PImage\n",
    "from torchvision import transforms as T\n",
    "from transformers import MaskFormerForInstanceSegmentation, MaskFormerImageProcessor"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "ade_mean=[0.485, 0.456, 0.406]\n",
    "ade_std=[0.229, 0.224, 0.225]\n",
    "\n",
    "palette = [\n",
    "    [120, 120, 120], [4, 200, 4], [4, 4, 250], [6, 230, 230],\n",
    "    [80, 50, 50], [120, 120, 80], [140, 140, 140], [204, 5, 255]\n",
    "]\n",
    "\n",
    "model_id = f\"thiagohersan/maskformer-satellite-trees\"\n",
    "\n",
    "vegetation_labels = [\"vegetation\"]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def visualize_instance_seg_mask(img_in, mask, id2label, included_labels):\n",
    "    img_out = np.zeros((mask.shape[0], mask.shape[1], 3))\n",
    "    image_total_pixels = mask.shape[0] * mask.shape[1]\n",
    "    label_ids = np.unique(mask)\n",
    "\n",
    "    id2color = {id: palette[id] for id in label_ids}\n",
    "    id2count = {id: 0 for id in label_ids}\n",
    "\n",
    "    for i in range(img_out.shape[0]):\n",
    "      for j in range(img_out.shape[1]):\n",
    "        img_out[i, j, :] = id2color[mask[i, j]]\n",
    "        id2count[mask[i, j]] = id2count[mask[i, j]] + 1\n",
    "\n",
    "    image_res = (0.5 * img_in + 0.5 * img_out).astype(np.uint8)\n",
    "\n",
    "    dataframe = [[\n",
    "        f\"{id2label[id]}\",\n",
    "        f\"{(100 * id2count[id] / image_total_pixels):.2f} %\",\n",
    "        f\"{np.sqrt(id2count[id] / image_total_pixels):.2f} m\"\n",
    "        ] for id in label_ids if id2label[id] in included_labels]\n",
    "\n",
    "    if len(dataframe) < 1:\n",
    "        dataframe = [[\n",
    "            f\"\",\n",
    "            f\"{(0):.2f} %\",\n",
    "            f\"{(0):.2f} m\"\n",
    "        ]]\n",
    "\n",
    "    return image_res, dataframe\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# preprocessor = MaskFormerImageProcessor.from_pretrained(model_id)\n",
    "preprocessor = MaskFormerImageProcessor(\n",
    "    do_resize=False,\n",
    "    do_normalize=False,\n",
    "    do_rescale=False,\n",
    "    ignore_index=255,\n",
    "    do_reduce_labels=False\n",
    ")\n",
    "\n",
    "hf_token = environ.get('HFTOKEN') or True\n",
    "model = MaskFormerForInstanceSegmentation.from_pretrained(model_id, use_auth_token=hf_token)\n",
    "\n",
    "test_transform = T.Compose([\n",
    "    T.ToTensor(),\n",
    "    T.Normalize(mean=ade_mean, std=ade_std)\n",
    "])\n",
    "\n",
    "with PImage.open(\"../color-filter-calculator/assets/Artshack_screen.jpg\") as img:\n",
    "    img_size = (img.height, img.width)\n",
    "    norm_image = test_transform(np.array(img))\n",
    "    inputs = preprocessor(images=norm_image, return_tensors=\"pt\")\n",
    "    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "outputs = model(**inputs)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "results = preprocessor.post_process_semantic_segmentation(outputs=outputs, target_sizes=[img_size])[0]\n",
    "mask_img, dataframe = visualize_instance_seg_mask(np.array(img), results.numpy(), model.config.id2label, vegetation_labels)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "dataframe"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3.8.15 ('gradio2023')",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.17"
  },
  "orig_nbformat": 4,
  "vscode": {
   "interpreter": {
    "hash": "311e94dbd43374307e33a15d3b7324b15a4f7b1d7ecfe8226f18075b87b9fae7"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}