hail75 commited on
Commit
97edd87
1 Parent(s): eee6b71

Delete models/SRFlow

Browse files
Files changed (42) hide show
  1. models/SRFlow/35000_G.pth +0 -3
  2. models/SRFlow/code/Measure.py +0 -134
  3. models/SRFlow/code/a.py +0 -27
  4. models/SRFlow/code/confs/RRDB_CelebA_8X.yml +0 -83
  5. models/SRFlow/code/confs/RRDB_DF2K_4X.yml +0 -85
  6. models/SRFlow/code/confs/RRDB_DF2K_8X.yml +0 -85
  7. models/SRFlow/code/confs/SRFlow_CelebA_8X.yml +0 -107
  8. models/SRFlow/code/confs/SRFlow_DF2K_4X.yml +0 -106
  9. models/SRFlow/code/confs/SRFlow_DF2K_8X.yml +0 -112
  10. models/SRFlow/code/data/LRHR_PKL_dataset.py +0 -179
  11. models/SRFlow/code/data/__init__.py +0 -51
  12. models/SRFlow/code/demo_on_pretrained.ipynb +0 -0
  13. models/SRFlow/code/imresize.py +0 -180
  14. models/SRFlow/code/models/SRFlow_model.py +0 -278
  15. models/SRFlow/code/models/SR_model.py +0 -217
  16. models/SRFlow/code/models/__init__.py +0 -52
  17. models/SRFlow/code/models/base_model.py +0 -154
  18. models/SRFlow/code/models/lr_scheduler.py +0 -163
  19. models/SRFlow/code/models/modules/FlowActNorms.py +0 -141
  20. models/SRFlow/code/models/modules/FlowAffineCouplingsAblation.py +0 -135
  21. models/SRFlow/code/models/modules/FlowStep.py +0 -137
  22. models/SRFlow/code/models/modules/FlowUpsamplerNet.py +0 -309
  23. models/SRFlow/code/models/modules/Permutations.py +0 -58
  24. models/SRFlow/code/models/modules/RRDBNet_arch.py +0 -148
  25. models/SRFlow/code/models/modules/SRFlowNet_arch.py +0 -158
  26. models/SRFlow/code/models/modules/Split.py +0 -86
  27. models/SRFlow/code/models/modules/__init__.py +0 -0
  28. models/SRFlow/code/models/modules/flow.py +0 -166
  29. models/SRFlow/code/models/modules/glow_arch.py +0 -28
  30. models/SRFlow/code/models/modules/loss.py +0 -90
  31. models/SRFlow/code/models/modules/module_util.py +0 -95
  32. models/SRFlow/code/models/modules/thops.py +0 -68
  33. models/SRFlow/code/models/networks.py +0 -105
  34. models/SRFlow/code/options/__init__.py +0 -0
  35. models/SRFlow/code/options/options.py +0 -146
  36. models/SRFlow/code/prepare_data.py +0 -118
  37. models/SRFlow/code/test.py +0 -192
  38. models/SRFlow/code/train.py +0 -328
  39. models/SRFlow/code/utils/__init__.py +0 -0
  40. models/SRFlow/code/utils/timer.py +0 -78
  41. models/SRFlow/code/utils/util.py +0 -174
  42. models/SRFlow/srflow.py +0 -27
models/SRFlow/35000_G.pth DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:040fcffde66ec3ef658a843d58832b8aa153734a2f04342d841e3018b498a511
3
- size 158819348
 
 
 
 
models/SRFlow/code/Measure.py DELETED
@@ -1,134 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- import glob
16
- import os
17
- import time
18
- from collections import OrderedDict
19
-
20
- import numpy as np
21
- import torch
22
- import cv2
23
- import argparse
24
-
25
- from natsort import natsort
26
- from skimage.metrics import structural_similarity as ssim
27
- from skimage.metrics import peak_signal_noise_ratio as psnr
28
- import lpips
29
-
30
-
31
- class Measure():
32
- def __init__(self, net='alex', use_gpu=False):
33
- self.device = 'cuda' if use_gpu else 'cpu'
34
- self.model = lpips.LPIPS(net=net)
35
- self.model.to(self.device)
36
-
37
- def measure(self, imgA, imgB):
38
- return [float(f(imgA, imgB)) for f in [self.psnr, self.ssim, self.lpips]]
39
-
40
- def lpips(self, imgA, imgB, model=None):
41
- tA = t(imgA).to(self.device)
42
- tB = t(imgB).to(self.device)
43
- dist01 = self.model.forward(tA, tB).item()
44
- return dist01
45
-
46
- def ssim(self, imgA, imgB):
47
- # multichannel: If True, treat the last dimension of the array as channels. Similarity calculations are done independently for each channel then averaged.
48
- score, diff = ssim(imgA, imgB, full=True, multichannel=True, channel_axis=-1)
49
- return score
50
-
51
- def psnr(self, imgA, imgB):
52
- psnr_val = psnr(imgA, imgB)
53
- return psnr_val
54
-
55
-
56
- def t(img):
57
- def to_4d(img):
58
- assert len(img.shape) == 3
59
- assert img.dtype == np.uint8
60
- img_new = np.expand_dims(img, axis=0)
61
- assert len(img_new.shape) == 4
62
- return img_new
63
-
64
- def to_CHW(img):
65
- return np.transpose(img, [2, 0, 1])
66
-
67
- def to_tensor(img):
68
- return torch.Tensor(img)
69
-
70
- return to_tensor(to_4d(to_CHW(img))) / 127.5 - 1
71
-
72
-
73
- def fiFindByWildcard(wildcard):
74
- return natsort.natsorted(glob.glob(wildcard, recursive=True))
75
-
76
-
77
- def imread(path):
78
- return cv2.imread(path)[:, :, [2, 1, 0]]
79
-
80
-
81
- def format_result(psnr, ssim, lpips):
82
- return f'{psnr:0.2f}, {ssim:0.3f}, {lpips:0.3f}'
83
-
84
- def measure_dirs(dirA, dirB, use_gpu, verbose=False):
85
- if verbose:
86
- vprint = lambda x: print(x)
87
- else:
88
- vprint = lambda x: None
89
-
90
-
91
- t_init = time.time()
92
-
93
- paths_A = fiFindByWildcard(os.path.join(dirA, f'*.{type}'))
94
- paths_B = fiFindByWildcard(os.path.join(dirB, f'*.{type}'))
95
-
96
- vprint("Comparing: ")
97
- vprint(dirA)
98
- vprint(dirB)
99
-
100
- measure = Measure(use_gpu=use_gpu)
101
-
102
- results = []
103
- for pathA, pathB in zip(paths_A, paths_B):
104
- result = OrderedDict()
105
-
106
- t = time.time()
107
- result['psnr'], result['ssim'], result['lpips'] = measure.measure(imread(pathA), imread(pathB))
108
- d = time.time() - t
109
- vprint(f"{pathA.split('/')[-1]}, {pathB.split('/')[-1]}, {format_result(**result)}, {d:0.1f}")
110
-
111
- results.append(result)
112
-
113
- psnr = np.mean([result['psnr'] for result in results])
114
- ssim = np.mean([result['ssim'] for result in results])
115
- lpips = np.mean([result['lpips'] for result in results])
116
-
117
- vprint(f"Final Result: {format_result(psnr, ssim, lpips)}, {time.time() - t_init:0.1f}s")
118
-
119
-
120
- if __name__ == "__main__":
121
- parser = argparse.ArgumentParser()
122
- parser.add_argument('-dirA', default='', type=str)
123
- parser.add_argument('-dirB', default='', type=str)
124
- parser.add_argument('-type', default='png')
125
- parser.add_argument('--use_gpu', action='store_true', default=False)
126
- args = parser.parse_args()
127
-
128
- dirA = args.dirA
129
- dirB = args.dirB
130
- type = args.type
131
- use_gpu = args.use_gpu
132
-
133
- if len(dirA) > 0 and len(dirB) > 0:
134
- measure_dirs(dirA, dirB, use_gpu=use_gpu, verbose=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/a.py DELETED
@@ -1,27 +0,0 @@
1
- import pickle
2
- import numpy as np
3
- import os
4
- import matplotlib.pyplot as plt
5
-
6
- def load_pkls(path):
7
- assert os.path.isfile(path), path
8
- images = []
9
- with open(path, "rb") as f:
10
- images += pickle.load(f)
11
- assert len(images) > 0, path
12
- images = [np.transpose(image, [2, 0, 1]) for image in images]
13
- return images
14
-
15
- path = 'datasets/DIV2K-va.pklv4'
16
- loaded_images = load_pkls(path)
17
- print(len(loaded_images))
18
- # Display the first image
19
- if loaded_images:
20
- first_image = loaded_images[11]
21
- plt.imshow(np.transpose(first_image, [1, 2, 0])) # Transpose image to original shape [height, width, channels]
22
- plt.title('First Image')
23
- plt.axis('off') # Hide axis
24
- plt.show()
25
- else:
26
- print("No images loaded from the pickle file.")
27
- print(loaded_images[11])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/confs/RRDB_CelebA_8X.yml DELETED
@@ -1,83 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- #
15
- # This file contains content licensed by https://github.com/xinntao/BasicSR/blob/master/LICENSE/LICENSE
16
-
17
- #### general settings
18
- name: train
19
- use_tb_logger: true
20
- model: SR
21
- distortion: sr
22
- scale: 8
23
- #gpu_ids: [ 0 ]
24
-
25
- #### datasets
26
- datasets:
27
- train:
28
- name: CelebA_160_tr
29
- mode: LRHR_PKL
30
- dataroot_GT: ../datasets/celebA-train-gt_1pct.pklv4
31
- dataroot_LQ: ../datasets/celebA-train-x8_1pct.pklv4
32
-
33
- use_shuffle: true
34
- n_workers: 0 # per GPU
35
- batch_size: 16
36
- GT_size: 160
37
- use_flip: true
38
- use_rot: true
39
- color: RGB
40
- val:
41
- name: CelebA_160_va
42
- mode: LRHR_PKL
43
- dataroot_GT: ../datasets/celebA-valid-gt_1pct.pklv4
44
- dataroot_LQ: ../datasets/celebA-valid-x8_1pct.pklv4
45
- n_max: 10
46
-
47
- #### network structures
48
- network_G:
49
- which_model_G: RRDBNet
50
- in_nc: 3
51
- out_nc: 3
52
- nf: 64
53
- nb: 23
54
-
55
- #### path
56
- path:
57
- pretrain_model_G: ~
58
- strict_load: true
59
- resume_state: auto
60
-
61
- #### training settings: learning rate scheme, loss
62
- train:
63
- lr_G: !!float 2e-4
64
- lr_scheme: CosineAnnealingLR_Restart
65
- beta1: 0.9
66
- beta2: 0.99
67
- niter: 200000
68
- warmup_iter: -1 # no warm up
69
- T_period: [ 50000, 50000, 50000, 50000 ]
70
- restarts: [ 50000, 100000, 150000 ]
71
- restart_weights: [ 1, 1, 1 ]
72
- eta_min: !!float 1e-7
73
-
74
- pixel_criterion: l1
75
- pixel_weight: 1.0
76
-
77
- manual_seed: 10
78
- val_freq: !!float 5e3
79
-
80
- #### logger
81
- logger:
82
- print_freq: 100
83
- save_checkpoint_freq: !!float 1e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/confs/RRDB_DF2K_4X.yml DELETED
@@ -1,85 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- #
15
- # This file contains content licensed by https://github.com/xinntao/BasicSR/blob/master/LICENSE/LICENSE
16
-
17
- #### general settings
18
- name: train
19
- use_tb_logger: true
20
- model: SR
21
- distortion: sr
22
- scale: 4
23
- gpu_ids: [ 0 ]
24
-
25
- #### datasets
26
- datasets:
27
- train:
28
- name: CelebA_160_tr
29
- mode: LRHR_PKL
30
- dataroot_GT: ../datasets/DF2K-train-gt_1pct.pklv4
31
- dataroot_LQ: ../datasets/DF2K-train-x4_1pct.pklv4
32
- quant: 32
33
-
34
- use_shuffle: true
35
- n_workers: 3 # per GPU
36
- batch_size: 16
37
- GT_size: 160
38
- use_flip: true
39
- color: RGB
40
- val:
41
- name: CelebA_160_va
42
- mode: LRHR_PKL
43
- dataroot_GT: ../datasets/DF2K-valid-gt_1pct.pklv4
44
- dataroot_LQ: ../datasets/DF2K-valid-x4_1pct.pklv4
45
- quant: 32
46
- n_max: 20
47
-
48
- #### network structures
49
- network_G:
50
- which_model_G: RRDBNet
51
- use_orig: True
52
- in_nc: 3
53
- out_nc: 3
54
- nf: 64
55
- nb: 23
56
-
57
- #### path
58
- path:
59
- pretrain_model_G: ~
60
- strict_load: true
61
- resume_state: auto
62
-
63
- #### training settings: learning rate scheme, loss
64
- train:
65
- lr_G: !!float 2e-4
66
- lr_scheme: CosineAnnealingLR_Restart
67
- beta1: 0.9
68
- beta2: 0.99
69
- niter: 1000000
70
- warmup_iter: -1 # no warm up
71
- T_period: [ 50000, 50000, 50000, 50000 ]
72
- restarts: [ 50000, 100000, 150000 ]
73
- restart_weights: [ 1, 1, 1 ]
74
- eta_min: !!float 1e-7
75
-
76
- pixel_criterion: l1
77
- pixel_weight: 1.0
78
-
79
- manual_seed: 10
80
- val_freq: !!float 5e3
81
-
82
- #### logger
83
- logger:
84
- print_freq: 100
85
- save_checkpoint_freq: !!float 1e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/confs/RRDB_DF2K_8X.yml DELETED
@@ -1,85 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- #
15
- # This file contains content licensed by https://github.com/xinntao/BasicSR/blob/master/LICENSE/LICENSE
16
-
17
- #### general settings
18
- name: train
19
- use_tb_logger: true
20
- model: SR
21
- distortion: sr
22
- scale: 8
23
- gpu_ids: [ 0 ]
24
-
25
- #### datasets
26
- datasets:
27
- train:
28
- name: CelebA_160_tr
29
- mode: LRHR_PKL
30
- dataroot_GT: ../datasets/DF2K-train-gt_1pct.pklv4
31
- dataroot_LQ: ../datasets/DF2K-train-x8_1pct.pklv4
32
- quant: 32
33
-
34
- use_shuffle: true
35
- n_workers: 3 # per GPU
36
- batch_size: 16
37
- GT_size: 160
38
- use_flip: true
39
- color: RGB
40
-
41
- val:
42
- name: CelebA_160_va
43
- mode: LRHR_PKL
44
- dataroot_GT: ../datasets/DF2K-valid-gt_1pct.pklv4
45
- dataroot_LQ: ../datasets/DF2K-valid-x8_1pct.pklv4
46
- quant: 32
47
- n_max: 20
48
-
49
- #### network structures
50
- network_G:
51
- which_model_G: RRDBNet
52
- in_nc: 3
53
- out_nc: 3
54
- nf: 64
55
- nb: 23
56
-
57
- #### path
58
- path:
59
- pretrain_model_G: ~
60
- strict_load: true
61
- resume_state: auto
62
-
63
- #### training settings: learning rate scheme, loss
64
- train:
65
- lr_G: !!float 2e-4
66
- lr_scheme: CosineAnnealingLR_Restart
67
- beta1: 0.9
68
- beta2: 0.99
69
- niter: 200000
70
- warmup_iter: -1 # no warm up
71
- T_period: [ 50000, 50000, 50000, 50000 ]
72
- restarts: [ 50000, 100000, 150000 ]
73
- restart_weights: [ 1, 1, 1 ]
74
- eta_min: !!float 1e-7
75
-
76
- pixel_criterion: l1
77
- pixel_weight: 1.0
78
-
79
- manual_seed: 10
80
- val_freq: !!float 5e3
81
-
82
- #### logger
83
- logger:
84
- print_freq: 100
85
- save_checkpoint_freq: !!float 1e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/confs/SRFlow_CelebA_8X.yml DELETED
@@ -1,107 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- #
15
- # This file contains content licensed by https://github.com/xinntao/BasicSR/blob/master/LICENSE/LICENSE
16
-
17
- #### general settings
18
- name: train
19
- use_tb_logger: true
20
- model: SRFlow
21
- distortion: sr
22
- scale: 8
23
- gpu_ids: [ 0 ]
24
-
25
- #### datasets
26
- datasets:
27
- train:
28
- name: CelebA_160_tr
29
- mode: LRHR_PKL
30
- dataroot_GT: ../datasets/celebA-train-gt.pklv4
31
- dataroot_LQ: ../datasets/celebA-train-x8.pklv4
32
- quant: 32
33
-
34
- use_shuffle: true
35
- n_workers: 3 # per GPU
36
- batch_size: 16
37
- GT_size: 160
38
- use_flip: true
39
- color: RGB
40
- val:
41
- name: CelebA_160_va
42
- mode: LRHR_PKL
43
- dataroot_GT: ../datasets/celebA-train-gt.pklv4
44
- dataroot_LQ: ../datasets/celebA-train-x8.pklv4
45
- quant: 32
46
- n_max: 20
47
-
48
- #### Test Settings
49
- dataroot_GT: ../datasets/celebA-validation-gt
50
- dataroot_LR: ../datasets/celebA-validation-x8
51
- model_path: ../pretrained_models/SRFlow_CelebA_8X.pth
52
- heat: 0.9 # This is the standard deviation of the latent vectors
53
-
54
- #### network structures
55
- network_G:
56
- which_model_G: SRFlowNet
57
- in_nc: 3
58
- out_nc: 3
59
- nf: 64
60
- nb: 8
61
- upscale: 8
62
- train_RRDB: false
63
- train_RRDB_delay: 0.5
64
-
65
- flow:
66
- K: 16
67
- L: 4
68
- noInitialInj: true
69
- coupling: CondAffineSeparatedAndCond
70
- additionalFlowNoAffine: 2
71
- split:
72
- enable: true
73
- fea_up0: true
74
- stackRRDB:
75
- blocks: [ 1, 3, 5, 7 ]
76
- concat: true
77
-
78
- #### path
79
- path:
80
- pretrain_model_G: ../pretrained_models/RRDB_CelebA_8X.pth
81
- strict_load: true
82
- resume_state: auto
83
-
84
- #### training settings: learning rate scheme, loss
85
- train:
86
- manual_seed: 10
87
- lr_G: !!float 5e-4
88
- weight_decay_G: 0
89
- beta1: 0.9
90
- beta2: 0.99
91
- lr_scheme: MultiStepLR
92
- warmup_iter: -1 # no warm up
93
- lr_steps_rel: [ 0.5, 0.75, 0.9, 0.95 ]
94
- lr_gamma: 0.5
95
-
96
- niter: 200000
97
- val_freq: 40000
98
-
99
- #### validation settings
100
- val:
101
- heats: [ 0.0, 0.5, 0.75, 1.0 ]
102
- n_sample: 3
103
-
104
- #### logger
105
- logger:
106
- print_freq: 100
107
- save_checkpoint_freq: !!float 1e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/confs/SRFlow_DF2K_4X.yml DELETED
@@ -1,106 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- #
15
- # This file contains content licensed by https://github.com/xinntao/BasicSR/blob/master/LICENSE/LICENSE
16
-
17
- #### general settings
18
- name: train
19
- use_tb_logger: true
20
- model: SRFlow
21
- distortion: sr
22
- scale: 4
23
- gpu_ids: [ 0 ]
24
-
25
- #### datasets
26
- datasets:
27
- train:
28
- name: DF2K_256_tr
29
- mode: LRHR_PKL
30
- dataroot_GT: /kaggle/input/srflow0103/SRFlow/datasets/DF2K-tr.pklv4
31
- dataroot_LQ: /kaggle/input/srflow0103/SRFlow/datasets/DF2K-tr_X4.pklv4
32
- quant: 32
33
-
34
- use_shuffle: true
35
- n_workers: 3 # per GPU
36
- batch_size: 12
37
- GT_size: 256
38
- use_flip: true
39
- color: RGB
40
- val:
41
- name: DF2K_256_tr
42
- mode: LRHR_PKL
43
- dataroot_GT: ../datasets/DIV2K-va.pklv4
44
- dataroot_LQ: ../datasets/DIV2K-va_X4.pklv4
45
- quant: 32
46
- n_max: 20
47
-
48
- #### Test Settings
49
- dataroot: /kaggle/input/test-set/test set
50
- model_path: /models/SRFlow/35000_G
51
- heat: 0.6 # This is the standard deviation of the latent vectors
52
-
53
- #### network structures
54
- network_G:
55
- which_model_G: SRFlowNet
56
- in_nc: 3
57
- out_nc: 3
58
- nf: 64
59
- nb: 23
60
- upscale: 4
61
- train_RRDB: false
62
- train_RRDB_delay: 0.5
63
-
64
- flow:
65
- K: 16
66
- L: 3
67
- noInitialInj: true
68
- coupling: CondAffineSeparatedAndCond
69
- additionalFlowNoAffine: 2
70
- split:
71
- enable: true
72
- fea_up0: true
73
- stackRRDB:
74
- blocks: [ 1, 8, 15, 22 ]
75
- concat: true
76
-
77
- #### path
78
- path:
79
- pretrain_model_G:
80
- strict_load: true
81
- resume_state: auto
82
-
83
- #### training settings: learning rate scheme, loss
84
- train:
85
- manual_seed: 10
86
- lr_G: !!float 2.5e-4
87
- weight_decay_G: 0
88
- beta1: 0.9
89
- beta2: 0.99
90
- lr_scheme: MultiStepLR
91
- warmup_iter: -1 # no warm up
92
- lr_steps_rel: [ 0.5, 0.75, 0.9, 0.95 ]
93
- lr_gamma: 0.5
94
-
95
- niter: 64185
96
- val_freq: 40000
97
-
98
- #### validation settings
99
- val:
100
- heats: [ 0.0, 0.5, 0.75, 1.0 ]
101
- n_sample: 3
102
-
103
- #### logger
104
- logger:
105
- print_freq: 100
106
- save_checkpoint_freq: !!float 5e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/confs/SRFlow_DF2K_8X.yml DELETED
@@ -1,112 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- #
15
- # This file contains content licensed by https://github.com/xinntao/BasicSR/blob/master/LICENSE/LICENSE
16
-
17
- #### general settings
18
- name: train
19
- use_tb_logger: true
20
- model: SRFlow
21
- distortion: sr
22
- scale: 8
23
- gpu_ids: [ 0 ]
24
-
25
- #### datasets
26
- datasets:
27
- train:
28
- name: CelebA_160_tr
29
- mode: LRHR_PKL
30
- dataroot_GT: ../datasets/DF2K-tr.pklv4
31
- dataroot_LQ: ../datasets/DF2K-tr_X8.pklv4
32
- quant: 32
33
-
34
- use_shuffle: true
35
- n_workers: 3 # per GPU
36
- batch_size: 16
37
- GT_size: 160
38
- use_flip: true
39
- color: RGB
40
-
41
- val:
42
- name: CelebA_160_va
43
- mode: LRHR_PKL
44
- dataroot_GT: ../datasets/DIV2K-va.pklv4
45
- dataroot_LQ: ../datasets/DIV2K-va_X8.pklv4
46
- quant: 32
47
- n_max: 20
48
-
49
- #### Test Settings
50
- dataroot_GT: ../datasets/div2k-validation-modcrop8-gt
51
- dataroot_LR: ../datasets/div2k-validation-modcrop8-x8
52
- model_path: ../pretrained_models/SRFlow_DF2K_8X.pth
53
- heat: 0.9 # This is the standard deviation of the latent vectors
54
-
55
- #### network structures
56
- network_G:
57
- which_model_G: SRFlowNet
58
- in_nc: 3
59
- out_nc: 3
60
- nf: 64
61
- nb: 23
62
- upscale: 8
63
- train_RRDB: false
64
- train_RRDB_delay: 0.5
65
-
66
- flow:
67
- K: 16
68
- L: 4
69
- noInitialInj: true
70
- coupling: CondAffineSeparatedAndCond
71
- additionalFlowNoAffine: 2
72
- split:
73
- enable: true
74
- fea_up0: true
75
- stackRRDB:
76
- blocks: [ 1, 3, 5, 7 ]
77
- concat: true
78
-
79
- #### path
80
- path:
81
- pretrain_model_G: ../pretrained_models/RRDB_DF2K_8X.pth
82
- strict_load: true
83
- resume_state: auto
84
-
85
- #### training settings: learning rate scheme, loss
86
- train:
87
- manual_seed: 10
88
- lr_G: !!float 5e-4
89
- weight_decay_G: 0
90
- beta1: 0.9
91
- beta2: 0.99
92
- lr_scheme: MultiStepLR
93
- warmup_iter: -1 # no warm up
94
- lr_steps_rel: [ 0.5, 0.75, 0.9, 0.95 ]
95
- lr_gamma: 0.5
96
-
97
- niter: 200000
98
- val_freq: 40000
99
-
100
- #### validation settings
101
- val:
102
- heats: [ 0.0, 0.5, 0.75, 1.0 ]
103
- n_sample: 3
104
-
105
- test:
106
- heats: [ 0.0, 0.7, 0.8, 0.9 ]
107
-
108
- #### logger
109
- logger:
110
- # Debug print_freq: 100
111
- print_freq: 100
112
- save_checkpoint_freq: !!float 1e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/data/LRHR_PKL_dataset.py DELETED
@@ -1,179 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- #
15
- # This file contains content licensed by https://github.com/xinntao/BasicSR/blob/master/LICENSE/LICENSE
16
-
17
- import os
18
- import subprocess
19
- import torch.utils.data as data
20
- import numpy as np
21
- import time
22
- import torch
23
-
24
- import pickle
25
-
26
-
27
- class LRHR_PKLDataset(data.Dataset):
28
- def __init__(self, opt):
29
- super(LRHR_PKLDataset, self).__init__()
30
- self.opt = opt
31
- self.crop_size = opt.get("GT_size", None)
32
- self.scale = None
33
- self.random_scale_list = [1]
34
-
35
- hr_file_path = opt["dataroot_GT"]
36
- lr_file_path = opt["dataroot_LQ"]
37
- y_labels_file_path = opt['dataroot_y_labels']
38
-
39
- gpu = True
40
- augment = True
41
-
42
- self.use_flip = opt["use_flip"] if "use_flip" in opt.keys() else False
43
- self.use_rot = opt["use_rot"] if "use_rot" in opt.keys() else False
44
- self.use_crop = opt["use_crop"] if "use_crop" in opt.keys() else False
45
- self.center_crop_hr_size = opt.get("center_crop_hr_size", None)
46
-
47
- n_max = opt["n_max"] if "n_max" in opt.keys() else int(1e8)
48
-
49
- t = time.time()
50
- self.lr_images = self.load_pkls(lr_file_path, n_max)
51
- self.hr_images = self.load_pkls(hr_file_path, n_max)
52
-
53
- min_val_hr = np.min([i.min() for i in self.hr_images[:20]])
54
- max_val_hr = np.max([i.max() for i in self.hr_images[:20]])
55
-
56
- min_val_lr = np.min([i.min() for i in self.lr_images[:20]])
57
- max_val_lr = np.max([i.max() for i in self.lr_images[:20]])
58
-
59
- t = time.time() - t
60
- print("Loaded {} HR images with [{:.2f}, {:.2f}] in {:.2f}s from {}".
61
- format(len(self.hr_images), min_val_hr, max_val_hr, t, hr_file_path))
62
- print("Loaded {} LR images with [{:.2f}, {:.2f}] in {:.2f}s from {}".
63
- format(len(self.lr_images), min_val_lr, max_val_lr, t, lr_file_path))
64
-
65
- self.gpu = gpu
66
- self.augment = augment
67
-
68
- self.measures = None
69
-
70
- def load_pkls(self, path, n_max):
71
- assert os.path.isfile(path), path
72
- images = []
73
- with open(path, "rb") as f:
74
- images += pickle.load(f)
75
- assert len(images) > 0, path
76
- images = images[:n_max]
77
- images = [np.transpose(image, [2, 0, 1]) for image in images]
78
- return images
79
-
80
- def __len__(self):
81
- return len(self.hr_images)
82
-
83
- def __getitem__(self, item):
84
- hr = self.hr_images[item]
85
- lr = self.lr_images[item]
86
-
87
- if self.scale == None:
88
- self.scale = hr.shape[1] // lr.shape[1]
89
- assert hr.shape[1] == self.scale * lr.shape[1], ('non-fractional ratio', lr.shape, hr.shape)
90
-
91
- if self.use_crop:
92
- hr, lr = random_crop(hr, lr, self.crop_size, self.scale, self.use_crop)
93
-
94
- if self.center_crop_hr_size:
95
- hr, lr = center_crop(hr, self.center_crop_hr_size), center_crop(lr, self.center_crop_hr_size // self.scale)
96
-
97
- if self.use_flip:
98
- hr, lr = random_flip(hr, lr)
99
-
100
- if self.use_rot:
101
- hr, lr = random_rotation(hr, lr)
102
-
103
- hr = hr / 255.0
104
- lr = lr / 255.0
105
-
106
- if self.measures is None or np.random.random() < 0.05:
107
- if self.measures is None:
108
- self.measures = {}
109
- self.measures['hr_means'] = np.mean(hr)
110
- self.measures['hr_stds'] = np.std(hr)
111
- self.measures['lr_means'] = np.mean(lr)
112
- self.measures['lr_stds'] = np.std(lr)
113
-
114
- hr = torch.Tensor(hr)
115
- lr = torch.Tensor(lr)
116
-
117
- # if self.gpu:
118
- # hr = hr.cuda()
119
- # lr = lr.cuda()
120
-
121
- return {'LQ': lr, 'GT': hr, 'LQ_path': str(item), 'GT_path': str(item)}
122
-
123
- def print_and_reset(self, tag):
124
- m = self.measures
125
- kvs = []
126
- for k in sorted(m.keys()):
127
- kvs.append("{}={:.2f}".format(k, m[k]))
128
- print("[KPI] " + tag + ": " + ", ".join(kvs))
129
- self.measures = None
130
-
131
-
132
- def random_flip(img, seg):
133
- random_choice = np.random.choice([True, False])
134
- img = img if random_choice else np.flip(img, 2).copy()
135
- seg = seg if random_choice else np.flip(seg, 2).copy()
136
- return img, seg
137
-
138
-
139
- def random_rotation(img, seg):
140
- random_choice = np.random.choice([0, 1, 3])
141
- img = np.rot90(img, random_choice, axes=(1, 2)).copy()
142
- seg = np.rot90(seg, random_choice, axes=(1, 2)).copy()
143
- return img, seg
144
-
145
-
146
- def random_crop(hr, lr, size_hr, scale, random):
147
- size_lr = size_hr // scale
148
-
149
- size_lr_x = lr.shape[1]
150
- size_lr_y = lr.shape[2]
151
-
152
- start_x_lr = np.random.randint(low=0, high=(size_lr_x - size_lr) + 1) if size_lr_x > size_lr else 0
153
- start_y_lr = np.random.randint(low=0, high=(size_lr_y - size_lr) + 1) if size_lr_y > size_lr else 0
154
-
155
- # LR Patch
156
- lr_patch = lr[:, start_x_lr:start_x_lr + size_lr, start_y_lr:start_y_lr + size_lr]
157
-
158
- # HR Patch
159
- start_x_hr = start_x_lr * scale
160
- start_y_hr = start_y_lr * scale
161
- hr_patch = hr[:, start_x_hr:start_x_hr + size_hr, start_y_hr:start_y_hr + size_hr]
162
-
163
- return hr_patch, lr_patch
164
-
165
-
166
- def center_crop(img, size):
167
- assert img.shape[1] == img.shape[2], img.shape
168
- border_double = img.shape[1] - size
169
- assert border_double % 2 == 0, (img.shape, size)
170
- border = border_double // 2
171
- return img[:, border:-border, border:-border]
172
-
173
-
174
- def center_crop_tensor(img, size):
175
- assert img.shape[2] == img.shape[3], img.shape
176
- border_double = img.shape[2] - size
177
- assert border_double % 2 == 0, (img.shape, size)
178
- border = border_double // 2
179
- return img[:, :, border:-border, border:-border]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/data/__init__.py DELETED
@@ -1,51 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- #
15
- # This file contains content licensed by https://github.com/xinntao/BasicSR/blob/master/LICENSE/LICENSE
16
-
17
- '''create dataset and dataloader'''
18
- import logging
19
- import torch
20
- import torch.utils.data
21
-
22
-
23
- def create_dataloader(dataset, dataset_opt, opt=None, sampler=None):
24
- phase = dataset_opt.get('phase', 'test')
25
- if phase == 'train':
26
- gpu_ids = opt.get('gpu_ids', None)
27
- gpu_ids = gpu_ids if gpu_ids else []
28
- num_workers = dataset_opt['n_workers'] * len(gpu_ids)
29
- batch_size = dataset_opt['batch_size']
30
- shuffle = True
31
- return torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=shuffle,
32
- num_workers=num_workers, sampler=sampler, drop_last=True,
33
- pin_memory=False)
34
- else:
35
- return torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, num_workers=1,
36
- pin_memory=True)
37
-
38
-
39
- def create_dataset(dataset_opt):
40
- print(dataset_opt)
41
- mode = dataset_opt['mode']
42
- if mode == 'LRHR_PKL':
43
- from data.LRHR_PKL_dataset import LRHR_PKLDataset as D
44
- else:
45
- raise NotImplementedError('Dataset [{:s}] is not recognized.'.format(mode))
46
- dataset = D(dataset_opt)
47
-
48
- logger = logging.getLogger('base')
49
- logger.info('Dataset [{:s} - {:s}] is created.'.format(dataset.__class__.__name__,
50
- dataset_opt['name']))
51
- return dataset
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/demo_on_pretrained.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
models/SRFlow/code/imresize.py DELETED
@@ -1,180 +0,0 @@
1
- # https://github.com/fatheral/matlab_imresize
2
- #
3
- # MIT License
4
- #
5
- # Copyright (c) 2020 Alex
6
- #
7
- # Permission is hereby granted, free of charge, to any person obtaining a copy
8
- # of this software and associated documentation files (the "Software"), to deal
9
- # in the Software without restriction, including without limitation the rights
10
- # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11
- # copies of the Software, and to permit persons to whom the Software is
12
- # furnished to do so, subject to the following conditions:
13
- #
14
- # The above copyright notice and this permission notice shall be included in all
15
- # copies or substantial portions of the Software.
16
- #
17
- # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18
- # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19
- # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
20
- # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21
- # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22
- # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23
- # SOFTWARE.
24
-
25
-
26
- from __future__ import print_function
27
- import numpy as np
28
- from math import ceil, floor
29
-
30
-
31
- def deriveSizeFromScale(img_shape, scale):
32
- output_shape = []
33
- for k in range(2):
34
- output_shape.append(int(ceil(scale[k] * img_shape[k])))
35
- return output_shape
36
-
37
-
38
- def deriveScaleFromSize(img_shape_in, img_shape_out):
39
- scale = []
40
- for k in range(2):
41
- scale.append(1.0 * img_shape_out[k] / img_shape_in[k])
42
- return scale
43
-
44
-
45
- def triangle(x):
46
- x = np.array(x).astype(np.float64)
47
- lessthanzero = np.logical_and((x >= -1), x < 0)
48
- greaterthanzero = np.logical_and((x <= 1), x >= 0)
49
- f = np.multiply((x + 1), lessthanzero) + np.multiply((1 - x), greaterthanzero)
50
- return f
51
-
52
-
53
- def cubic(x):
54
- x = np.array(x).astype(np.float64)
55
- absx = np.absolute(x)
56
- absx2 = np.multiply(absx, absx)
57
- absx3 = np.multiply(absx2, absx)
58
- f = np.multiply(1.5 * absx3 - 2.5 * absx2 + 1, absx <= 1) + np.multiply(-0.5 * absx3 + 2.5 * absx2 - 4 * absx + 2,
59
- (1 < absx) & (absx <= 2))
60
- return f
61
-
62
-
63
- def contributions(in_length, out_length, scale, kernel, k_width):
64
- if scale < 1:
65
- h = lambda x: scale * kernel(scale * x)
66
- kernel_width = 1.0 * k_width / scale
67
- else:
68
- h = kernel
69
- kernel_width = k_width
70
- x = np.arange(1, out_length + 1).astype(np.float64)
71
- u = x / scale + 0.5 * (1 - 1 / scale)
72
- left = np.floor(u - kernel_width / 2)
73
- P = int(ceil(kernel_width)) + 2
74
- ind = np.expand_dims(left, axis=1) + np.arange(P) - 1 # -1 because indexing from 0
75
- indices = ind.astype(np.int32)
76
- weights = h(np.expand_dims(u, axis=1) - indices - 1) # -1 because indexing from 0
77
- weights = np.divide(weights, np.expand_dims(np.sum(weights, axis=1), axis=1))
78
- aux = np.concatenate((np.arange(in_length), np.arange(in_length - 1, -1, step=-1))).astype(np.int32)
79
- indices = aux[np.mod(indices, aux.size)]
80
- ind2store = np.nonzero(np.any(weights, axis=0))
81
- weights = weights[:, ind2store]
82
- indices = indices[:, ind2store]
83
- return weights, indices
84
-
85
-
86
- def imresizemex(inimg, weights, indices, dim):
87
- in_shape = inimg.shape
88
- w_shape = weights.shape
89
- out_shape = list(in_shape)
90
- out_shape[dim] = w_shape[0]
91
- outimg = np.zeros(out_shape)
92
- if dim == 0:
93
- for i_img in range(in_shape[1]):
94
- for i_w in range(w_shape[0]):
95
- w = weights[i_w, :]
96
- ind = indices[i_w, :]
97
- im_slice = inimg[ind, i_img].astype(np.float64)
98
- outimg[i_w, i_img] = np.sum(np.multiply(np.squeeze(im_slice, axis=0), w.T), axis=0)
99
- elif dim == 1:
100
- for i_img in range(in_shape[0]):
101
- for i_w in range(w_shape[0]):
102
- w = weights[i_w, :]
103
- ind = indices[i_w, :]
104
- im_slice = inimg[i_img, ind].astype(np.float64)
105
- outimg[i_img, i_w] = np.sum(np.multiply(np.squeeze(im_slice, axis=0), w.T), axis=0)
106
- if inimg.dtype == np.uint8:
107
- outimg = np.clip(outimg, 0, 255)
108
- return np.around(outimg).astype(np.uint8)
109
- else:
110
- return outimg
111
-
112
-
113
- def imresizevec(inimg, weights, indices, dim):
114
- wshape = weights.shape
115
- if dim == 0:
116
- weights = weights.reshape((wshape[0], wshape[2], 1, 1))
117
- outimg = np.sum(weights * ((inimg[indices].squeeze(axis=1)).astype(np.float64)), axis=1)
118
- elif dim == 1:
119
- weights = weights.reshape((1, wshape[0], wshape[2], 1))
120
- outimg = np.sum(weights * ((inimg[:, indices].squeeze(axis=2)).astype(np.float64)), axis=2)
121
- if inimg.dtype == np.uint8:
122
- outimg = np.clip(outimg, 0, 255)
123
- return np.around(outimg).astype(np.uint8)
124
- else:
125
- return outimg
126
-
127
-
128
- def resizeAlongDim(A, dim, weights, indices, mode="vec"):
129
- if mode == "org":
130
- out = imresizemex(A, weights, indices, dim)
131
- else:
132
- out = imresizevec(A, weights, indices, dim)
133
- return out
134
-
135
-
136
- def imresize(I, scalar_scale=None, method='bicubic', output_shape=None, mode="vec"):
137
- if method is 'bicubic':
138
- kernel = cubic
139
- elif method is 'bilinear':
140
- kernel = triangle
141
- else:
142
- print('Error: Unidentified method supplied')
143
-
144
- kernel_width = 4.0
145
- # Fill scale and output_size
146
- if scalar_scale is not None:
147
- scalar_scale = float(scalar_scale)
148
- scale = [scalar_scale, scalar_scale]
149
- output_size = deriveSizeFromScale(I.shape, scale)
150
- elif output_shape is not None:
151
- scale = deriveScaleFromSize(I.shape, output_shape)
152
- output_size = list(output_shape)
153
- else:
154
- print('Error: scalar_scale OR output_shape should be defined!')
155
- return
156
- scale_np = np.array(scale)
157
- order = np.argsort(scale_np)
158
- weights = []
159
- indices = []
160
- for k in range(2):
161
- w, ind = contributions(I.shape[k], output_size[k], scale[k], kernel, kernel_width)
162
- weights.append(w)
163
- indices.append(ind)
164
- B = np.copy(I)
165
- flag2D = False
166
- if B.ndim == 2:
167
- B = np.expand_dims(B, axis=2)
168
- flag2D = True
169
- for k in range(2):
170
- dim = order[k]
171
- B = resizeAlongDim(B, dim, weights[dim], indices[dim], mode)
172
- if flag2D:
173
- B = np.squeeze(B, axis=2)
174
- return B
175
-
176
-
177
- def convertDouble2Byte(I):
178
- B = np.clip(I, 0.0, 1.0)
179
- B = 255 * B
180
- return np.around(B).astype(np.uint8)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/models/SRFlow_model.py DELETED
@@ -1,278 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- #
15
- # This file contains content licensed by https://github.com/xinntao/BasicSR/blob/master/LICENSE/LICENSE
16
-
17
- import logging
18
- from collections import OrderedDict
19
- from utils.util import get_resume_paths, opt_get
20
-
21
- import torch
22
- import torch.nn as nn
23
- from torch.nn.parallel import DataParallel, DistributedDataParallel
24
- import models.networks as networks
25
- import models.lr_scheduler as lr_scheduler
26
- from .base_model import BaseModel
27
-
28
- logger = logging.getLogger('base')
29
-
30
-
31
- class SRFlowModel(BaseModel):
32
- def __init__(self, opt, step):
33
- super(SRFlowModel, self).__init__(opt)
34
- self.opt = opt
35
-
36
- self.heats = opt['val']['heats']
37
- self.n_sample = opt['val']['n_sample']
38
- self.hr_size = opt_get(opt, ['datasets', 'train', 'center_crop_hr_size'])
39
- self.hr_size = 256 if self.hr_size is None else self.hr_size
40
- self.lr_size = self.hr_size // opt['scale']
41
-
42
- if opt['dist']:
43
- self.rank = torch.distributed.get_rank()
44
- else:
45
- self.rank = -1 # non dist training
46
- train_opt = opt['train']
47
-
48
- # define network and load pretrained models
49
- self.netG = networks.define_Flow(opt, step).to(self.device)
50
- if opt['dist']:
51
- self.netG = DistributedDataParallel(self.netG, device_ids=[torch.cuda.current_device()])
52
- else:
53
- self.netG = DataParallel(self.netG)
54
- # print network
55
- self.print_network()
56
-
57
- if opt_get(opt, ['path', 'resume_state'], 1) is not None:
58
- self.load()
59
- else:
60
- print("WARNING: skipping initial loading, due to resume_state None")
61
-
62
- if self.is_train:
63
- self.netG.train()
64
-
65
- self.init_optimizer_and_scheduler(train_opt)
66
- self.log_dict = OrderedDict()
67
-
68
- def to(self, device):
69
- self.device = device
70
- self.netG.to(device)
71
-
72
- def init_optimizer_and_scheduler(self, train_opt):
73
- # optimizers
74
- self.optimizers = []
75
- wd_G = train_opt['weight_decay_G'] if train_opt['weight_decay_G'] else 0
76
- optim_params_RRDB = []
77
- optim_params_other = []
78
- for k, v in self.netG.named_parameters(): # can optimize for a part of the model
79
- print(k, v.requires_grad)
80
- if v.requires_grad:
81
- if '.RRDB.' in k:
82
- optim_params_RRDB.append(v)
83
- print('opt', k)
84
- else:
85
- optim_params_other.append(v)
86
- if self.rank <= 0:
87
- logger.warning('Params [{:s}] will not optimize.'.format(k))
88
-
89
- print('rrdb params', len(optim_params_RRDB))
90
-
91
- self.optimizer_G = torch.optim.Adam(
92
- [
93
- {"params": optim_params_other, "lr": train_opt['lr_G'], 'beta1': train_opt['beta1'],
94
- 'beta2': train_opt['beta2'], 'weight_decay': wd_G},
95
- {"params": optim_params_RRDB, "lr": train_opt.get('lr_RRDB', train_opt['lr_G']),
96
- 'beta1': train_opt['beta1'],
97
- 'beta2': train_opt['beta2'], 'weight_decay': wd_G}
98
- ],
99
- )
100
-
101
- self.optimizers.append(self.optimizer_G)
102
- # schedulers
103
- if train_opt['lr_scheme'] == 'MultiStepLR':
104
- for optimizer in self.optimizers:
105
- self.schedulers.append(
106
- lr_scheduler.MultiStepLR_Restart(optimizer, train_opt['lr_steps'],
107
- restarts=train_opt['restarts'],
108
- weights=train_opt['restart_weights'],
109
- gamma=train_opt['lr_gamma'],
110
- clear_state=train_opt['clear_state'],
111
- lr_steps_invese=train_opt.get('lr_steps_inverse', [])))
112
- elif train_opt['lr_scheme'] == 'CosineAnnealingLR_Restart':
113
- for optimizer in self.optimizers:
114
- self.schedulers.append(
115
- lr_scheduler.CosineAnnealingLR_Restart(
116
- optimizer, train_opt['T_period'], eta_min=train_opt['eta_min'],
117
- restarts=train_opt['restarts'], weights=train_opt['restart_weights']))
118
- else:
119
- raise NotImplementedError('MultiStepLR learning rate scheme is enough.')
120
-
121
- def add_optimizer_and_scheduler_RRDB(self, train_opt):
122
- # optimizers
123
- assert len(self.optimizers) == 1, self.optimizers
124
- assert len(self.optimizer_G.param_groups[1]['params']) == 0, self.optimizer_G.param_groups[1]
125
- for k, v in self.netG.named_parameters(): # can optimize for a part of the model
126
- if v.requires_grad:
127
- if '.RRDB.' in k:
128
- self.optimizer_G.param_groups[1]['params'].append(v)
129
- assert len(self.optimizer_G.param_groups[1]['params']) > 0
130
-
131
- def feed_data(self, data, need_GT=True):
132
- self.var_L = data['LQ'].to(self.device) # LQ
133
- if need_GT:
134
- self.real_H = data['GT'].to(self.device) # GT
135
-
136
- def optimize_parameters(self, step):
137
-
138
- train_RRDB_delay = opt_get(self.opt, ['network_G', 'train_RRDB_delay'])
139
- if train_RRDB_delay is not None and step > int(train_RRDB_delay * self.opt['train']['niter']) \
140
- and not self.netG.module.RRDB_training:
141
- if self.netG.module.set_rrdb_training(True):
142
- self.add_optimizer_and_scheduler_RRDB(self.opt['train'])
143
-
144
- # self.print_rrdb_state()
145
-
146
- self.netG.train()
147
- self.log_dict = OrderedDict()
148
- self.optimizer_G.zero_grad()
149
-
150
- losses = {}
151
- weight_fl = opt_get(self.opt, ['train', 'weight_fl'])
152
- weight_fl = 1 if weight_fl is None else weight_fl
153
- if weight_fl > 0:
154
- z, nll, y_logits = self.netG(gt=self.real_H, lr=self.var_L, reverse=False)
155
- nll_loss = torch.mean(nll)
156
- losses['nll_loss'] = nll_loss * weight_fl
157
-
158
- weight_l1 = opt_get(self.opt, ['train', 'weight_l1']) or 0
159
- if weight_l1 > 0:
160
- z = self.get_z(heat=0, seed=None, batch_size=self.var_L.shape[0], lr_shape=self.var_L.shape)
161
- sr, logdet = self.netG(lr=self.var_L, z=z, eps_std=0, reverse=True, reverse_with_grad=True)
162
- l1_loss = (sr - self.real_H).abs().mean()
163
- losses['l1_loss'] = l1_loss * weight_l1
164
-
165
- total_loss = sum(losses.values())
166
- total_loss.backward()
167
- self.optimizer_G.step()
168
-
169
- mean = total_loss.item()
170
- return mean
171
-
172
- def print_rrdb_state(self):
173
- for name, param in self.netG.module.named_parameters():
174
- if "RRDB.conv_first.weight" in name:
175
- print(name, param.requires_grad, param.data.abs().sum())
176
- print('params', [len(p['params']) for p in self.optimizer_G.param_groups])
177
-
178
- def test(self):
179
- self.netG.eval()
180
- self.fake_H = {}
181
- for heat in self.heats:
182
- for i in range(self.n_sample):
183
- z = self.get_z(heat, seed=None, batch_size=self.var_L.shape[0], lr_shape=self.var_L.shape)
184
- with torch.no_grad():
185
- self.fake_H[(heat, i)], logdet = self.netG(lr=self.var_L, z=z, eps_std=heat, reverse=True)
186
- with torch.no_grad():
187
- _, nll, _ = self.netG(gt=self.real_H, lr=self.var_L, reverse=False)
188
- self.netG.train()
189
- return nll.mean().item()
190
-
191
- def get_encode_nll(self, lq, gt):
192
- self.netG.eval()
193
- with torch.no_grad():
194
- _, nll, _ = self.netG(gt=gt, lr=lq, reverse=False)
195
- self.netG.train()
196
- return nll.mean().item()
197
-
198
- def get_sr(self, lq, heat=None, seed=None, z=None, epses=None):
199
- return self.get_sr_with_z(lq, heat, seed, z, epses)[0]
200
-
201
- def get_encode_z(self, lq, gt, epses=None, add_gt_noise=True):
202
- self.netG.eval()
203
- with torch.no_grad():
204
- z, _, _ = self.netG(gt=gt, lr=lq, reverse=False, epses=epses, add_gt_noise=add_gt_noise)
205
- self.netG.train()
206
- return z
207
-
208
- def get_encode_z_and_nll(self, lq, gt, epses=None, add_gt_noise=True):
209
- self.netG.eval()
210
- with torch.no_grad():
211
- z, nll, _ = self.netG(gt=gt, lr=lq, reverse=False, epses=epses, add_gt_noise=add_gt_noise)
212
- self.netG.train()
213
- return z, nll
214
-
215
- def get_sr_with_z(self, lq, heat=None, seed=None, z=None, epses=None):
216
- self.netG.eval()
217
-
218
- z = self.get_z(heat, seed, batch_size=lq.shape[0], lr_shape=lq.shape) if z is None and epses is None else z
219
-
220
- with torch.no_grad():
221
- sr, logdet = self.netG(lr=lq, z=z, eps_std=heat, reverse=True, epses=epses)
222
- self.netG.train()
223
- return sr, z
224
-
225
- def get_z(self, heat, seed=None, batch_size=1, lr_shape=None):
226
- if seed: torch.manual_seed(seed)
227
- if opt_get(self.opt, ['network_G', 'flow', 'split', 'enable']):
228
- C = self.netG.module.flowUpsamplerNet.C
229
- H = int(self.opt['scale'] * lr_shape[2] // self.netG.module.flowUpsamplerNet.scaleH)
230
- W = int(self.opt['scale'] * lr_shape[3] // self.netG.module.flowUpsamplerNet.scaleW)
231
- z = torch.normal(mean=0, std=heat, size=(batch_size, C, H, W)) if heat > 0 else torch.zeros(
232
- (batch_size, C, H, W))
233
- else:
234
- L = opt_get(self.opt, ['network_G', 'flow', 'L']) or 3
235
- fac = 2 ** (L - 3)
236
- z_size = int(self.lr_size // (2 ** (L - 3)))
237
- z = torch.normal(mean=0, std=heat, size=(batch_size, 3 * 8 * 8 * fac * fac, z_size, z_size))
238
- return z
239
-
240
- def get_current_log(self):
241
- return self.log_dict
242
-
243
- def get_current_visuals(self, need_GT=True):
244
- out_dict = OrderedDict()
245
- out_dict['LQ'] = self.var_L.detach()[0].float().cpu()
246
- for heat in self.heats:
247
- for i in range(self.n_sample):
248
- out_dict[('SR', heat, i)] = self.fake_H[(heat, i)].detach()[0].float().cpu()
249
- if need_GT:
250
- out_dict['GT'] = self.real_H.detach()[0].float().cpu()
251
- return out_dict
252
-
253
- def print_network(self):
254
- s, n = self.get_network_description(self.netG)
255
- if isinstance(self.netG, nn.DataParallel) or isinstance(self.netG, DistributedDataParallel):
256
- net_struc_str = '{} - {}'.format(self.netG.__class__.__name__,
257
- self.netG.module.__class__.__name__)
258
- else:
259
- net_struc_str = '{}'.format(self.netG.__class__.__name__)
260
- if self.rank <= 0:
261
- logger.info('Network G structure: {}, with parameters: {:,d}'.format(net_struc_str, n))
262
- logger.info(s)
263
-
264
- def load(self):
265
- _, get_resume_model_path = get_resume_paths(self.opt)
266
- if get_resume_model_path is not None:
267
- self.load_network(get_resume_model_path, self.netG, strict=True, submodule=None)
268
- return
269
-
270
- load_path_G = self.opt['path']['pretrain_model_G']
271
- load_submodule = self.opt['path']['load_submodule'] if 'load_submodule' in self.opt['path'].keys() else 'RRDB'
272
- if load_path_G is not None:
273
- logger.info('Loading model for G [{:s}] ...'.format(load_path_G))
274
- self.load_network(load_path_G, self.netG, self.opt['path'].get('strict_load', True),
275
- submodule=load_submodule)
276
-
277
- def save(self, iter_label):
278
- self.save_network(self.netG, 'G', iter_label)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/models/SR_model.py DELETED
@@ -1,217 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- #
15
- # This file contains content licensed by https://github.com/xinntao/BasicSR/blob/master/LICENSE/LICENSE
16
-
17
- import logging
18
- from collections import OrderedDict
19
-
20
- import torch
21
- import torch.nn as nn
22
- from torch.nn.parallel import DataParallel, DistributedDataParallel
23
- import models.networks as networks
24
- import models.lr_scheduler as lr_scheduler
25
- from utils.util import opt_get
26
- from .base_model import BaseModel
27
- from models.modules.loss import CharbonnierLoss
28
-
29
- logger = logging.getLogger('base')
30
-
31
-
32
- class SRModel(BaseModel):
33
- def __init__(self, opt, step):
34
- super(SRModel, self).__init__(opt)
35
-
36
- self.step = step
37
-
38
- if opt['dist']:
39
- self.rank = torch.distributed.get_rank()
40
- else:
41
- self.rank = -1 # non dist training
42
- train_opt = opt['train']
43
-
44
- # define network and load pretrained_models models
45
- self.netG = networks.define_G(opt).to(self.device)
46
- if opt['dist']:
47
- self.netG = DistributedDataParallel(self.netG, device_ids=[torch.cuda.current_device()])
48
- else:
49
- self.netG = DataParallel(self.netG)
50
- # print network
51
- self.print_network()
52
- self.load()
53
-
54
- if self.is_train:
55
- self.netG.train()
56
-
57
- # loss
58
- loss_type = train_opt['pixel_criterion']
59
- if loss_type == 'l1':
60
- self.cri_pix = nn.L1Loss().to(self.device)
61
- elif loss_type == 'l2':
62
- self.cri_pix = nn.MSELoss().to(self.device)
63
- elif loss_type == 'cb':
64
- self.cri_pix = CharbonnierLoss().to(self.device)
65
- else:
66
- raise NotImplementedError('Loss type [{:s}] is not recognized.'.format(loss_type))
67
- self.l_pix_w = train_opt['pixel_weight']
68
-
69
- # optimizers
70
- wd_G = train_opt['weight_decay_G'] if train_opt['weight_decay_G'] else 0
71
- optim_params = []
72
- for k, v in self.netG.named_parameters(): # can optimize for a part of the model
73
- if v.requires_grad:
74
- optim_params.append(v)
75
- else:
76
- if self.rank <= 0:
77
- logger.warning('Params [{:s}] will not optimize.'.format(k))
78
- self.optimizer_G = torch.optim.Adam(optim_params, lr=train_opt['lr_G'],
79
- weight_decay=wd_G,
80
- betas=(train_opt['beta1'], train_opt['beta2']))
81
- self.optimizers.append(self.optimizer_G)
82
-
83
- # schedulers
84
- if train_opt['lr_scheme'] == 'MultiStepLR':
85
- for optimizer in self.optimizers:
86
- self.schedulers.append(
87
- lr_scheduler.MultiStepLR_Restart(optimizer, train_opt['lr_steps'],
88
- restarts=train_opt['restarts'],
89
- weights=train_opt['restart_weights'],
90
- gamma=train_opt['lr_gamma'],
91
- clear_state=train_opt['clear_state']))
92
- elif train_opt['lr_scheme'] == 'CosineAnnealingLR_Restart':
93
- for optimizer in self.optimizers:
94
- self.schedulers.append(
95
- lr_scheduler.CosineAnnealingLR_Restart(
96
- optimizer, train_opt['T_period'], eta_min=train_opt['eta_min'],
97
- restarts=train_opt['restarts'], weights=train_opt['restart_weights']))
98
- else:
99
- raise NotImplementedError('MultiStepLR learning rate scheme is enough.')
100
-
101
- self.log_dict = OrderedDict()
102
-
103
- def feed_data(self, data, need_GT=True):
104
- self.var_L = data['LQ'].to(self.device) # LQ
105
- if need_GT:
106
- self.real_H = data['GT'].to(self.device) # GT
107
-
108
- def to(self, device):
109
- self.device = device
110
- self.netG.to(device)
111
-
112
- def optimize_parameters(self, step):
113
- def getEnv(name): import os; return True if name in os.environ.keys() else False
114
-
115
- if getEnv("DEBUG_FEED_IMAGES"):
116
- import imageio
117
- import random
118
- i = random.randint(0, 10000)
119
- label = self.var_L.cpu().numpy()[0].transpose([1, 2, 0])
120
- print("var_L", label.min(), label.max(), label.shape)
121
- imageio.imwrite("/tmp/{}_l.png".format(i), label)
122
- image = self.real_H.cpu().numpy()[0].transpose([1, 2, 0])
123
- print("self.real_H", image.min(), image.max(), image.shape)
124
- imageio.imwrite("/tmp/{}_gt.png".format(i), image)
125
- self.optimizer_G.zero_grad()
126
- self.fake_H = self.netG(self.var_L)
127
- l_pix = self.l_pix_w * self.cri_pix(self.fake_H, self.real_H.to(self.fake_H.device))
128
- l_pix.backward()
129
- self.optimizer_G.step()
130
-
131
- # set log
132
- self.log_dict['l_pix'] = l_pix.item()
133
-
134
- def test(self):
135
- self.netG.eval()
136
- with torch.no_grad():
137
- self.fake_H = self.netG(self.var_L)
138
- self.netG.train()
139
-
140
- def get_encode_nll(self, lq, gt):
141
- return torch.ones(1) * 1e14
142
-
143
- def get_sr(self, lq, heat=None, seed=None):
144
- self.netG.eval()
145
- sr = self.netG(lq)
146
- self.netG.train()
147
- return sr
148
-
149
- def test_x8(self):
150
- # from https://github.com/thstkdgus35/EDSR-PyTorch
151
- self.netG.eval()
152
-
153
- def _transform(v, op):
154
- # if self.precision != 'single': v = v.float()
155
- v2np = v.data.cpu().numpy()
156
- if op == 'v':
157
- tfnp = v2np[:, :, :, ::-1].copy()
158
- elif op == 'h':
159
- tfnp = v2np[:, :, ::-1, :].copy()
160
- elif op == 't':
161
- tfnp = v2np.transpose((0, 1, 3, 2)).copy()
162
-
163
- ret = torch.Tensor(tfnp).to(self.device)
164
- # if self.precision == 'half': ret = ret.half()
165
-
166
- return ret
167
-
168
- lr_list = [self.var_L]
169
- for tf in 'v', 'h', 't':
170
- lr_list.extend([_transform(t, tf) for t in lr_list])
171
- with torch.no_grad():
172
- sr_list = [self.netG(aug) for aug in lr_list]
173
- for i in range(len(sr_list)):
174
- if i > 3:
175
- sr_list[i] = _transform(sr_list[i], 't')
176
- if i % 4 > 1:
177
- sr_list[i] = _transform(sr_list[i], 'h')
178
- if (i % 4) % 2 == 1:
179
- sr_list[i] = _transform(sr_list[i], 'v')
180
-
181
- output_cat = torch.cat(sr_list, dim=0)
182
- self.fake_H = output_cat.mean(dim=0, keepdim=True)
183
- self.netG.train()
184
-
185
- def get_current_log(self):
186
- return self.log_dict
187
-
188
- def get_current_visuals(self, need_GT=True):
189
- out_dict = OrderedDict()
190
- out_dict['LQ'] = self.var_L.detach()[0].float().cpu()
191
- out_dict['SR'] = self.fake_H.detach()[0].float().cpu()
192
- if need_GT:
193
- out_dict['GT'] = self.real_H.detach()[0].float().cpu()
194
- return out_dict
195
-
196
- def print_network(self):
197
- s, n = self.get_network_description(self.netG)
198
- if isinstance(self.netG, nn.DataParallel) or isinstance(self.netG, DistributedDataParallel):
199
- net_struc_str = '{} - {}'.format(self.netG.__class__.__name__,
200
- self.netG.module.__class__.__name__)
201
- else:
202
- net_struc_str = '{}'.format(self.netG.__class__.__name__)
203
- if self.rank <= 0:
204
- logger.info('Network G structure: {}, with parameters: {:,d}'.format(net_struc_str, n))
205
- logger.info(s)
206
-
207
- def load(self):
208
- load_path_G = self.opt['path']['pretrain_model_G']
209
- if load_path_G is not None:
210
- logger.info('Loading model for G [{:s}] ...'.format(load_path_G))
211
- self.load_network(load_path_G, self.netG, self.opt['path']['strict_load'])
212
-
213
- def save(self, iter_label):
214
- self.save_network(self.netG, 'G', iter_label)
215
-
216
- def get_encode_z_and_nll(self, *args, **kwargs):
217
- return [], torch.zeros(1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/models/__init__.py DELETED
@@ -1,52 +0,0 @@
1
- import importlib
2
- import logging
3
- import os
4
-
5
- try:
6
- import local_config
7
- except:
8
- local_config = None
9
-
10
-
11
- logger = logging.getLogger('base')
12
-
13
-
14
- def find_model_using_name(model_name):
15
- # Given the option --model [modelname],
16
- # the file "models/modelname_model.py"
17
- # will be imported.
18
- model_filename = "models." + model_name + "_model"
19
- modellib = importlib.import_module(model_filename)
20
-
21
- # In the file, the class called ModelNameModel() will
22
- # be instantiated. It has to be a subclass of torch.nn.Module,
23
- # and it is case-insensitive.
24
- model = None
25
- target_model_name = model_name.replace('_', '') + 'Model'
26
- for name, cls in modellib.__dict__.items():
27
- if name.lower() == target_model_name.lower():
28
- model = cls
29
-
30
- if model is None:
31
- print(
32
- "In %s.py, there should be a subclass of torch.nn.Module with class name that matches %s." % (
33
- model_filename, target_model_name))
34
- exit(0)
35
-
36
- return model
37
-
38
-
39
- def create_model(opt, step=0, **opt_kwargs):
40
- if local_config is not None:
41
- opt['path']['pretrain_model_G'] = os.path.join(local_config.checkpoint_path, os.path.basename(opt['path']['results_root'] + '.pth'))
42
-
43
- for k, v in opt_kwargs.items():
44
- opt[k] = v
45
-
46
- model = opt['model']
47
-
48
- M = find_model_using_name(model)
49
-
50
- m = M(opt, step)
51
- logger.info('Model [{:s}] is created.'.format(m.__class__.__name__))
52
- return m
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/models/base_model.py DELETED
@@ -1,154 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- #
15
- # This file contains content licensed by https://github.com/xinntao/BasicSR/blob/master/LICENSE/LICENSE
16
-
17
- import os
18
- from collections import OrderedDict
19
- import torch
20
- import torch.nn as nn
21
- from torch.nn.parallel import DistributedDataParallel
22
- import natsort
23
- import glob
24
-
25
-
26
- class BaseModel():
27
- def __init__(self, opt):
28
- self.opt = opt
29
- self.device = torch.device('cuda' if opt.get('gpu_ids', None) is not None else 'cpu')
30
- self.is_train = opt['is_train']
31
- self.schedulers = []
32
- self.optimizers = []
33
-
34
- def feed_data(self, data):
35
- pass
36
-
37
- def optimize_parameters(self):
38
- pass
39
-
40
- def get_current_visuals(self):
41
- pass
42
-
43
- def get_current_losses(self):
44
- pass
45
-
46
- def print_network(self):
47
- pass
48
-
49
- def save(self, label):
50
- pass
51
-
52
- def load(self):
53
- pass
54
-
55
- def _set_lr(self, lr_groups_l):
56
- ''' set learning rate for warmup,
57
- lr_groups_l: list for lr_groups. each for a optimizer'''
58
- for optimizer, lr_groups in zip(self.optimizers, lr_groups_l):
59
- for param_group, lr in zip(optimizer.param_groups, lr_groups):
60
- param_group['lr'] = lr
61
-
62
- def _get_init_lr(self):
63
- # get the initial lr, which is set by the scheduler
64
- init_lr_groups_l = []
65
- for optimizer in self.optimizers:
66
- init_lr_groups_l.append([v['initial_lr'] for v in optimizer.param_groups])
67
- return init_lr_groups_l
68
-
69
- def update_learning_rate(self, cur_iter, warmup_iter=-1):
70
- for scheduler in self.schedulers:
71
- scheduler.step()
72
- #### set up warm up learning rate
73
- if cur_iter < warmup_iter:
74
- # get initial lr for each group
75
- init_lr_g_l = self._get_init_lr()
76
- # modify warming-up learning rates
77
- warm_up_lr_l = []
78
- for init_lr_g in init_lr_g_l:
79
- warm_up_lr_l.append([v / warmup_iter * cur_iter for v in init_lr_g])
80
- # set learning rate
81
- self._set_lr(warm_up_lr_l)
82
-
83
- def get_current_learning_rate(self):
84
- # return self.schedulers[0].get_lr()[0]
85
- return self.optimizers[0].param_groups[0]['lr']
86
-
87
- def get_network_description(self, network):
88
- '''Get the string and total parameters of the network'''
89
- if isinstance(network, nn.DataParallel) or isinstance(network, DistributedDataParallel):
90
- network = network.module
91
- s = str(network)
92
- n = sum(map(lambda x: x.numel(), network.parameters()))
93
- return s, n
94
-
95
- def save_network(self, network, network_label, iter_label):
96
- paths = natsort.natsorted(glob.glob(os.path.join(self.opt['path']['models'], "*_{}.pth".format(network_label))),
97
- reverse=True)
98
- paths = [p for p in paths if
99
- "latest_" not in p and not any([str(i * 10000) in p.split("/")[-1].split("_") for i in range(101)])]
100
- if len(paths) > 2:
101
- for path in paths[2:]:
102
- os.remove(path)
103
- save_filename = '{}_{}.pth'.format(iter_label, network_label)
104
- save_path = os.path.join(self.opt['path']['models'], save_filename)
105
- if isinstance(network, nn.DataParallel) or isinstance(network, DistributedDataParallel):
106
- network = network.module
107
- state_dict = network.state_dict()
108
- for key, param in state_dict.items():
109
- state_dict[key] = param.cpu()
110
- torch.save(state_dict, save_path)
111
-
112
- def load_network(self, load_path, network, strict=True, submodule=None):
113
- if isinstance(network, nn.DataParallel) or isinstance(network, DistributedDataParallel):
114
- network = network.module
115
- if not (submodule is None or submodule.lower() == 'none'.lower()):
116
- network = network.__getattr__(submodule)
117
- load_net = torch.load(load_path)
118
- load_net_clean = OrderedDict() # remove unnecessary 'module.'
119
- for k, v in load_net.items():
120
- if k.startswith('module.'):
121
- load_net_clean[k[7:]] = v
122
- else:
123
- load_net_clean[k] = v
124
- network.load_state_dict(load_net_clean, strict=strict)
125
-
126
- def save_training_state(self, epoch, iter_step):
127
- '''Saves training state during training, which will be used for resuming'''
128
- state = {'epoch': epoch, 'iter': iter_step, 'schedulers': [], 'optimizers': []}
129
- for s in self.schedulers:
130
- state['schedulers'].append(s.state_dict())
131
- for o in self.optimizers:
132
- state['optimizers'].append(o.state_dict())
133
- save_filename = '{}.state'.format(iter_step)
134
- save_path = os.path.join(self.opt['path']['training_state'], save_filename)
135
-
136
- paths = natsort.natsorted(glob.glob(os.path.join(self.opt['path']['training_state'], "*.state")),
137
- reverse=True)
138
- paths = [p for p in paths if "latest_" not in p]
139
- if len(paths) > 2:
140
- for path in paths[2:]:
141
- os.remove(path)
142
-
143
- torch.save(state, save_path)
144
-
145
- def resume_training(self, resume_state):
146
- '''Resume the optimizers and schedulers for training'''
147
- resume_optimizers = resume_state['optimizers']
148
- resume_schedulers = resume_state['schedulers']
149
- assert len(resume_optimizers) == len(self.optimizers), 'Wrong lengths of optimizers'
150
- assert len(resume_schedulers) == len(self.schedulers), 'Wrong lengths of schedulers'
151
- for i, o in enumerate(resume_optimizers):
152
- self.optimizers[i].load_state_dict(o)
153
- for i, s in enumerate(resume_schedulers):
154
- self.schedulers[i].load_state_dict(s)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/models/lr_scheduler.py DELETED
@@ -1,163 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- #
15
- # This file contains content licensed by https://github.com/xinntao/BasicSR/blob/master/LICENSE/LICENSE
16
-
17
- import math
18
- from collections import Counter
19
- from collections import defaultdict
20
- import torch
21
- from torch.optim.lr_scheduler import _LRScheduler
22
-
23
-
24
- class MultiStepLR_Restart(_LRScheduler):
25
- def __init__(self, optimizer, milestones, restarts=None, weights=None, gamma=0.1,
26
- clear_state=False, last_epoch=-1, lr_steps_invese=None):
27
- assert lr_steps_invese is not None, "Use empty list"
28
- self.milestones = Counter(milestones)
29
- self.lr_steps_inverse = Counter(lr_steps_invese)
30
- self.gamma = gamma
31
- self.clear_state = clear_state
32
- self.restarts = restarts if restarts else [0]
33
- self.restart_weights = weights if weights else [1]
34
- assert len(self.restarts) == len(
35
- self.restart_weights), 'restarts and their weights do not match.'
36
- super(MultiStepLR_Restart, self).__init__(optimizer, last_epoch)
37
-
38
- def get_lr(self):
39
- if self.last_epoch in self.restarts:
40
- if self.clear_state:
41
- self.optimizer.state = defaultdict(dict)
42
- weight = self.restart_weights[self.restarts.index(self.last_epoch)]
43
- return [group['initial_lr'] * weight for group in self.optimizer.param_groups]
44
- if self.last_epoch not in self.milestones and self.last_epoch not in self.lr_steps_inverse:
45
- return [group['lr'] for group in self.optimizer.param_groups]
46
- return [
47
- group['lr'] * (self.gamma ** self.milestones[self.last_epoch]) *
48
- (self.gamma ** (-self.lr_steps_inverse[self.last_epoch]))
49
- for group in self.optimizer.param_groups
50
- ]
51
-
52
-
53
- class CosineAnnealingLR_Restart(_LRScheduler):
54
- def __init__(self, optimizer, T_period, restarts=None, weights=None, eta_min=0, last_epoch=-1):
55
- self.T_period = T_period
56
- self.T_max = self.T_period[0] # current T period
57
- self.eta_min = eta_min
58
- self.restarts = restarts if restarts else [0]
59
- self.restart_weights = weights if weights else [1]
60
- self.last_restart = 0
61
- assert len(self.restarts) == len(
62
- self.restart_weights), 'restarts and their weights do not match.'
63
- super(CosineAnnealingLR_Restart, self).__init__(optimizer, last_epoch)
64
-
65
- def get_lr(self):
66
- if self.last_epoch == 0:
67
- return self.base_lrs
68
- elif self.last_epoch in self.restarts:
69
- self.last_restart = self.last_epoch
70
- self.T_max = self.T_period[self.restarts.index(self.last_epoch) + 1]
71
- weight = self.restart_weights[self.restarts.index(self.last_epoch)]
72
- return [group['initial_lr'] * weight for group in self.optimizer.param_groups]
73
- elif (self.last_epoch - self.last_restart - 1 - self.T_max) % (2 * self.T_max) == 0:
74
- return [
75
- group['lr'] + (base_lr - self.eta_min) * (1 - math.cos(math.pi / self.T_max)) / 2
76
- for base_lr, group in zip(self.base_lrs, self.optimizer.param_groups)
77
- ]
78
- return [(1 + math.cos(math.pi * (self.last_epoch - self.last_restart) / self.T_max)) /
79
- (1 + math.cos(math.pi * ((self.last_epoch - self.last_restart) - 1) / self.T_max)) *
80
- (group['lr'] - self.eta_min) + self.eta_min
81
- for group in self.optimizer.param_groups]
82
-
83
-
84
- if __name__ == "__main__":
85
- optimizer = torch.optim.Adam([torch.zeros(3, 64, 3, 3)], lr=2e-4, weight_decay=0,
86
- betas=(0.9, 0.99))
87
- ##############################
88
- # MultiStepLR_Restart
89
- ##############################
90
- ## Original
91
- lr_steps = [200000, 400000, 600000, 800000]
92
- restarts = None
93
- restart_weights = None
94
-
95
- ## two
96
- lr_steps = [100000, 200000, 300000, 400000, 490000, 600000, 700000, 800000, 900000, 990000]
97
- restarts = [500000]
98
- restart_weights = [1]
99
-
100
- ## four
101
- lr_steps = [
102
- 50000, 100000, 150000, 200000, 240000, 300000, 350000, 400000, 450000, 490000, 550000,
103
- 600000, 650000, 700000, 740000, 800000, 850000, 900000, 950000, 990000
104
- ]
105
- restarts = [250000, 500000, 750000]
106
- restart_weights = [1, 1, 1]
107
-
108
- scheduler = MultiStepLR_Restart(optimizer, lr_steps, restarts, restart_weights, gamma=0.5,
109
- clear_state=False)
110
-
111
- ##############################
112
- # Cosine Annealing Restart
113
- ##############################
114
- ## two
115
- T_period = [500000, 500000]
116
- restarts = [500000]
117
- restart_weights = [1]
118
-
119
- ## four
120
- T_period = [250000, 250000, 250000, 250000]
121
- restarts = [250000, 500000, 750000]
122
- restart_weights = [1, 1, 1]
123
-
124
- scheduler = CosineAnnealingLR_Restart(optimizer, T_period, eta_min=1e-7, restarts=restarts,
125
- weights=restart_weights)
126
-
127
- ##############################
128
- # Draw figure
129
- ##############################
130
- N_iter = 1000000
131
- lr_l = list(range(N_iter))
132
- for i in range(N_iter):
133
- scheduler.step()
134
- current_lr = optimizer.param_groups[0]['lr']
135
- lr_l[i] = current_lr
136
-
137
- import matplotlib as mpl
138
- from matplotlib import pyplot as plt
139
- import matplotlib.ticker as mtick
140
-
141
- mpl.style.use('default')
142
- import seaborn
143
-
144
- seaborn.set(style='whitegrid')
145
- seaborn.set_context('paper')
146
-
147
- plt.figure(1)
148
- plt.subplot(111)
149
- plt.ticklabel_format(style='sci', axis='x', scilimits=(0, 0))
150
- plt.title('Title', fontsize=16, color='k')
151
- plt.plot(list(range(N_iter)), lr_l, linewidth=1.5, label='learning rate scheme')
152
- legend = plt.legend(loc='upper right', shadow=False)
153
- ax = plt.gca()
154
- labels = ax.get_xticks().tolist()
155
- for k, v in enumerate(labels):
156
- labels[k] = str(int(v / 1000)) + 'K'
157
- ax.set_xticklabels(labels)
158
- ax.yaxis.set_major_formatter(mtick.FormatStrFormatter('%.1e'))
159
-
160
- ax.set_ylabel('Learning rate')
161
- ax.set_xlabel('Iteration')
162
- fig = plt.gcf()
163
- plt.show()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/models/modules/FlowActNorms.py DELETED
@@ -1,141 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- #
15
- # This file contains content licensed by https://github.com/chaiyujin/glow-pytorch/blob/master/LICENSE
16
-
17
- import torch
18
- from torch import nn as nn
19
-
20
- from models.modules import thops
21
-
22
-
23
- class _ActNorm(nn.Module):
24
- """
25
- Activation Normalization
26
- Initialize the bias and scale with a given minibatch,
27
- so that the output per-channel have zero mean and unit variance for that.
28
-
29
- After initialization, `bias` and `logs` will be trained as parameters.
30
- """
31
-
32
- def __init__(self, num_features, scale=1.):
33
- super().__init__()
34
- # register mean and scale
35
- size = [1, num_features, 1, 1]
36
- self.register_parameter("bias", nn.Parameter(torch.zeros(*size)))
37
- self.register_parameter("logs", nn.Parameter(torch.zeros(*size)))
38
- self.num_features = num_features
39
- self.scale = float(scale)
40
- self.inited = False
41
-
42
- def _check_input_dim(self, input):
43
- return NotImplemented
44
-
45
- def initialize_parameters(self, input):
46
- self._check_input_dim(input)
47
- if not self.training:
48
- return
49
- if (self.bias != 0).any():
50
- self.inited = True
51
- return
52
- assert input.device == self.bias.device, (input.device, self.bias.device)
53
- with torch.no_grad():
54
- bias = thops.mean(input.clone(), dim=[0, 2, 3], keepdim=True) * -1.0
55
- vars = thops.mean((input.clone() + bias) ** 2, dim=[0, 2, 3], keepdim=True)
56
- logs = torch.log(self.scale / (torch.sqrt(vars) + 1e-6))
57
- self.bias.data.copy_(bias.data)
58
- self.logs.data.copy_(logs.data)
59
- self.inited = True
60
-
61
- def _center(self, input, reverse=False, offset=None):
62
- bias = self.bias
63
-
64
- if offset is not None:
65
- bias = bias + offset
66
-
67
- if not reverse:
68
- return input + bias
69
- else:
70
- return input - bias
71
-
72
- def _scale(self, input, logdet=None, reverse=False, offset=None):
73
- logs = self.logs
74
-
75
- if offset is not None:
76
- logs = logs + offset
77
-
78
- if not reverse:
79
- input = input * torch.exp(logs) # should have shape batchsize, n_channels, 1, 1
80
- # input = input * torch.exp(logs+logs_offset)
81
- else:
82
- input = input * torch.exp(-logs)
83
- if logdet is not None:
84
- """
85
- logs is log_std of `mean of channels`
86
- so we need to multiply pixels
87
- """
88
- dlogdet = thops.sum(logs) * thops.pixels(input)
89
- if reverse:
90
- dlogdet *= -1
91
- logdet = logdet + dlogdet
92
- return input, logdet
93
-
94
- def forward(self, input, logdet=None, reverse=False, offset_mask=None, logs_offset=None, bias_offset=None):
95
- if not self.inited:
96
- self.initialize_parameters(input)
97
- self._check_input_dim(input)
98
-
99
- if offset_mask is not None:
100
- logs_offset *= offset_mask
101
- bias_offset *= offset_mask
102
- # no need to permute dims as old version
103
- if not reverse:
104
- # center and scale
105
-
106
- # self.input = input
107
- input = self._center(input, reverse, bias_offset)
108
- input, logdet = self._scale(input, logdet, reverse, logs_offset)
109
- else:
110
- # scale and center
111
- input, logdet = self._scale(input, logdet, reverse, logs_offset)
112
- input = self._center(input, reverse, bias_offset)
113
- return input, logdet
114
-
115
-
116
- class ActNorm2d(_ActNorm):
117
- def __init__(self, num_features, scale=1.):
118
- super().__init__(num_features, scale)
119
-
120
- def _check_input_dim(self, input):
121
- assert len(input.size()) == 4
122
- assert input.size(1) == self.num_features, (
123
- "[ActNorm]: input should be in shape as `BCHW`,"
124
- " channels should be {} rather than {}".format(
125
- self.num_features, input.size()))
126
-
127
-
128
- class MaskedActNorm2d(ActNorm2d):
129
- def __init__(self, num_features, scale=1.):
130
- super().__init__(num_features, scale)
131
-
132
- def forward(self, input, mask, logdet=None, reverse=False):
133
-
134
- assert mask.dtype == torch.bool
135
- output, logdet_out = super().forward(input, logdet, reverse)
136
-
137
- input[mask] = output[mask]
138
- logdet[mask] = logdet_out[mask]
139
-
140
- return input, logdet
141
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/models/modules/FlowAffineCouplingsAblation.py DELETED
@@ -1,135 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- #
15
- # This file contains content licensed by https://github.com/chaiyujin/glow-pytorch/blob/master/LICENSE
16
-
17
- import torch
18
- from torch import nn as nn
19
-
20
- from models.modules import thops
21
- from models.modules.flow import Conv2d, Conv2dZeros
22
- from utils.util import opt_get
23
-
24
-
25
- class CondAffineSeparatedAndCond(nn.Module):
26
- def __init__(self, in_channels, opt):
27
- super().__init__()
28
- self.need_features = True
29
- self.in_channels = in_channels
30
- self.in_channels_rrdb = 320
31
- self.kernel_hidden = 1
32
- self.affine_eps = 0.0001
33
- self.n_hidden_layers = 1
34
- hidden_channels = opt_get(opt, ['network_G', 'flow', 'CondAffineSeparatedAndCond', 'hidden_channels'])
35
- self.hidden_channels = 64 if hidden_channels is None else hidden_channels
36
-
37
- self.affine_eps = opt_get(opt, ['network_G', 'flow', 'CondAffineSeparatedAndCond', 'eps'], 0.0001)
38
-
39
- self.channels_for_nn = self.in_channels // 2
40
- self.channels_for_co = self.in_channels - self.channels_for_nn
41
-
42
- if self.channels_for_nn is None:
43
- self.channels_for_nn = self.in_channels // 2
44
-
45
- self.fAffine = self.F(in_channels=self.channels_for_nn + self.in_channels_rrdb,
46
- out_channels=self.channels_for_co * 2,
47
- hidden_channels=self.hidden_channels,
48
- kernel_hidden=self.kernel_hidden,
49
- n_hidden_layers=self.n_hidden_layers)
50
-
51
- self.fFeatures = self.F(in_channels=self.in_channels_rrdb,
52
- out_channels=self.in_channels * 2,
53
- hidden_channels=self.hidden_channels,
54
- kernel_hidden=self.kernel_hidden,
55
- n_hidden_layers=self.n_hidden_layers)
56
-
57
- def forward(self, input: torch.Tensor, logdet=None, reverse=False, ft=None):
58
- if not reverse:
59
- z = input
60
- assert z.shape[1] == self.in_channels, (z.shape[1], self.in_channels)
61
-
62
- # Feature Conditional
63
- scaleFt, shiftFt = self.feature_extract(ft, self.fFeatures)
64
- z = z + shiftFt
65
- z = z * scaleFt
66
- logdet = logdet + self.get_logdet(scaleFt)
67
-
68
- # Self Conditional
69
- z1, z2 = self.split(z)
70
- scale, shift = self.feature_extract_aff(z1, ft, self.fAffine)
71
- self.asserts(scale, shift, z1, z2)
72
- z2 = z2 + shift
73
- z2 = z2 * scale
74
-
75
- logdet = logdet + self.get_logdet(scale)
76
- z = thops.cat_feature(z1, z2)
77
- output = z
78
- else:
79
- z = input
80
-
81
- # Self Conditional
82
- z1, z2 = self.split(z)
83
- scale, shift = self.feature_extract_aff(z1, ft, self.fAffine)
84
- self.asserts(scale, shift, z1, z2)
85
- z2 = z2 / scale
86
- z2 = z2 - shift
87
- z = thops.cat_feature(z1, z2)
88
- logdet = logdet - self.get_logdet(scale)
89
-
90
- # Feature Conditional
91
- scaleFt, shiftFt = self.feature_extract(ft, self.fFeatures)
92
- z = z / scaleFt
93
- z = z - shiftFt
94
- logdet = logdet - self.get_logdet(scaleFt)
95
-
96
- output = z
97
- return output, logdet
98
-
99
- def asserts(self, scale, shift, z1, z2):
100
- assert z1.shape[1] == self.channels_for_nn, (z1.shape[1], self.channels_for_nn)
101
- assert z2.shape[1] == self.channels_for_co, (z2.shape[1], self.channels_for_co)
102
- assert scale.shape[1] == shift.shape[1], (scale.shape[1], shift.shape[1])
103
- assert scale.shape[1] == z2.shape[1], (scale.shape[1], z1.shape[1], z2.shape[1])
104
-
105
- def get_logdet(self, scale):
106
- return thops.sum(torch.log(scale), dim=[1, 2, 3])
107
-
108
- def feature_extract(self, z, f):
109
- h = f(z)
110
- shift, scale = thops.split_feature(h, "cross")
111
- scale = (torch.sigmoid(scale + 2.) + self.affine_eps)
112
- return scale, shift
113
-
114
- def feature_extract_aff(self, z1, ft, f):
115
- z = torch.cat([z1, ft], dim=1)
116
- h = f(z)
117
- shift, scale = thops.split_feature(h, "cross")
118
- scale = (torch.sigmoid(scale + 2.) + self.affine_eps)
119
- return scale, shift
120
-
121
- def split(self, z):
122
- z1 = z[:, :self.channels_for_nn]
123
- z2 = z[:, self.channels_for_nn:]
124
- assert z1.shape[1] + z2.shape[1] == z.shape[1], (z1.shape[1], z2.shape[1], z.shape[1])
125
- return z1, z2
126
-
127
- def F(self, in_channels, out_channels, hidden_channels, kernel_hidden=1, n_hidden_layers=1):
128
- layers = [Conv2d(in_channels, hidden_channels), nn.ReLU(inplace=False)]
129
-
130
- for _ in range(n_hidden_layers):
131
- layers.append(Conv2d(hidden_channels, hidden_channels, kernel_size=[kernel_hidden, kernel_hidden]))
132
- layers.append(nn.ReLU(inplace=False))
133
- layers.append(Conv2dZeros(hidden_channels, out_channels))
134
-
135
- return nn.Sequential(*layers)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/models/modules/FlowStep.py DELETED
@@ -1,137 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- #
15
- # This file contains content licensed by https://github.com/chaiyujin/glow-pytorch/blob/master/LICENSE
16
-
17
- import torch
18
- from torch import nn as nn
19
-
20
- import models.modules
21
- import models.modules.Permutations
22
- from models.modules import flow, thops, FlowAffineCouplingsAblation
23
- from utils.util import opt_get
24
-
25
-
26
- def getConditional(rrdbResults, position):
27
- img_ft = rrdbResults if isinstance(rrdbResults, torch.Tensor) else rrdbResults[position]
28
- return img_ft
29
-
30
-
31
- class FlowStep(nn.Module):
32
- FlowPermutation = {
33
- "reverse": lambda obj, z, logdet, rev: (obj.reverse(z, rev), logdet),
34
- "shuffle": lambda obj, z, logdet, rev: (obj.shuffle(z, rev), logdet),
35
- "invconv": lambda obj, z, logdet, rev: obj.invconv(z, logdet, rev),
36
- "squeeze_invconv": lambda obj, z, logdet, rev: obj.invconv(z, logdet, rev),
37
- "resqueeze_invconv_alternating_2_3": lambda obj, z, logdet, rev: obj.invconv(z, logdet, rev),
38
- "resqueeze_invconv_3": lambda obj, z, logdet, rev: obj.invconv(z, logdet, rev),
39
- "InvertibleConv1x1GridAlign": lambda obj, z, logdet, rev: obj.invconv(z, logdet, rev),
40
- "InvertibleConv1x1SubblocksShuf": lambda obj, z, logdet, rev: obj.invconv(z, logdet, rev),
41
- "InvertibleConv1x1GridAlignIndepBorder": lambda obj, z, logdet, rev: obj.invconv(z, logdet, rev),
42
- "InvertibleConv1x1GridAlignIndepBorder4": lambda obj, z, logdet, rev: obj.invconv(z, logdet, rev),
43
- }
44
-
45
- def __init__(self, in_channels, hidden_channels,
46
- actnorm_scale=1.0, flow_permutation="invconv", flow_coupling="additive",
47
- LU_decomposed=False, opt=None, image_injector=None, idx=None, acOpt=None, normOpt=None, in_shape=None,
48
- position=None):
49
- # check configures
50
- assert flow_permutation in FlowStep.FlowPermutation, \
51
- "float_permutation should be in `{}`".format(
52
- FlowStep.FlowPermutation.keys())
53
- super().__init__()
54
- self.flow_permutation = flow_permutation
55
- self.flow_coupling = flow_coupling
56
- self.image_injector = image_injector
57
-
58
- self.norm_type = normOpt['type'] if normOpt else 'ActNorm2d'
59
- self.position = normOpt['position'] if normOpt else None
60
-
61
- self.in_shape = in_shape
62
- self.position = position
63
- self.acOpt = acOpt
64
-
65
- # 1. actnorm
66
- self.actnorm = models.modules.FlowActNorms.ActNorm2d(in_channels, actnorm_scale)
67
-
68
- # 2. permute
69
- if flow_permutation == "invconv":
70
- self.invconv = models.modules.Permutations.InvertibleConv1x1(
71
- in_channels, LU_decomposed=LU_decomposed)
72
-
73
- # 3. coupling
74
- if flow_coupling == "CondAffineSeparatedAndCond":
75
- self.affine = models.modules.FlowAffineCouplingsAblation.CondAffineSeparatedAndCond(in_channels=in_channels,
76
- opt=opt)
77
- elif flow_coupling == "noCoupling":
78
- pass
79
- else:
80
- raise RuntimeError("coupling not Found:", flow_coupling)
81
-
82
- def forward(self, input, logdet=None, reverse=False, rrdbResults=None):
83
- if not reverse:
84
- return self.normal_flow(input, logdet, rrdbResults)
85
- else:
86
- return self.reverse_flow(input, logdet, rrdbResults)
87
-
88
- def normal_flow(self, z, logdet, rrdbResults=None):
89
- if self.flow_coupling == "bentIdentityPreAct":
90
- z, logdet = self.bentIdentPar(z, logdet, reverse=False)
91
-
92
- # 1. actnorm
93
- if self.norm_type == "ConditionalActNormImageInjector":
94
- img_ft = getConditional(rrdbResults, self.position)
95
- z, logdet = self.actnorm(z, img_ft=img_ft, logdet=logdet, reverse=False)
96
- elif self.norm_type == "noNorm":
97
- pass
98
- else:
99
- z, logdet = self.actnorm(z, logdet=logdet, reverse=False)
100
-
101
- # 2. permute
102
- z, logdet = FlowStep.FlowPermutation[self.flow_permutation](
103
- self, z, logdet, False)
104
-
105
- need_features = self.affine_need_features()
106
-
107
- # 3. coupling
108
- if need_features or self.flow_coupling in ["condAffine", "condFtAffine", "condNormAffine"]:
109
- img_ft = getConditional(rrdbResults, self.position)
110
- z, logdet = self.affine(input=z, logdet=logdet, reverse=False, ft=img_ft)
111
- return z, logdet
112
-
113
- def reverse_flow(self, z, logdet, rrdbResults=None):
114
-
115
- need_features = self.affine_need_features()
116
-
117
- # 1.coupling
118
- if need_features or self.flow_coupling in ["condAffine", "condFtAffine", "condNormAffine"]:
119
- img_ft = getConditional(rrdbResults, self.position)
120
- z, logdet = self.affine(input=z, logdet=logdet, reverse=True, ft=img_ft)
121
-
122
- # 2. permute
123
- z, logdet = FlowStep.FlowPermutation[self.flow_permutation](
124
- self, z, logdet, True)
125
-
126
- # 3. actnorm
127
- z, logdet = self.actnorm(z, logdet=logdet, reverse=True)
128
-
129
- return z, logdet
130
-
131
- def affine_need_features(self):
132
- need_features = False
133
- try:
134
- need_features = self.affine.need_features
135
- except:
136
- pass
137
- return need_features
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/models/modules/FlowUpsamplerNet.py DELETED
@@ -1,309 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- #
15
- # This file contains content licensed by https://github.com/chaiyujin/glow-pytorch/blob/master/LICENSE
16
-
17
- import numpy as np
18
- import torch
19
- from torch import nn as nn
20
-
21
- import models.modules.Split
22
- from models.modules import flow, thops
23
- from models.modules.Split import Split2d
24
- from models.modules.glow_arch import f_conv2d_bias
25
- from models.modules.FlowStep import FlowStep
26
- from utils.util import opt_get
27
-
28
-
29
- class FlowUpsamplerNet(nn.Module):
30
- def __init__(self, image_shape, hidden_channels, K, L=None,
31
- actnorm_scale=1.0,
32
- flow_permutation=None,
33
- flow_coupling="affine",
34
- LU_decomposed=False, opt=None):
35
-
36
- super().__init__()
37
-
38
- self.layers = nn.ModuleList()
39
- self.output_shapes = []
40
- self.L = opt_get(opt, ['network_G', 'flow', 'L'])
41
- self.K = opt_get(opt, ['network_G', 'flow', 'K'])
42
- if isinstance(self.K, int):
43
- self.K = [K for K in [K, ] * (self.L + 1)]
44
-
45
- self.opt = opt
46
- H, W, self.C = image_shape
47
- self.check_image_shape()
48
-
49
- if opt['scale'] == 16:
50
- self.levelToName = {
51
- 0: 'fea_up16',
52
- 1: 'fea_up8',
53
- 2: 'fea_up4',
54
- 3: 'fea_up2',
55
- 4: 'fea_up1',
56
- }
57
-
58
- if opt['scale'] == 8:
59
- self.levelToName = {
60
- 0: 'fea_up8',
61
- 1: 'fea_up4',
62
- 2: 'fea_up2',
63
- 3: 'fea_up1',
64
- 4: 'fea_up0'
65
- }
66
-
67
- elif opt['scale'] == 4:
68
- self.levelToName = {
69
- 0: 'fea_up4',
70
- 1: 'fea_up2',
71
- 2: 'fea_up1',
72
- 3: 'fea_up0',
73
- 4: 'fea_up-1'
74
- }
75
-
76
- affineInCh = self.get_affineInCh(opt_get)
77
- flow_permutation = self.get_flow_permutation(flow_permutation, opt)
78
-
79
- normOpt = opt_get(opt, ['network_G', 'flow', 'norm'])
80
-
81
- conditional_channels = {}
82
- n_rrdb = self.get_n_rrdb_channels(opt, opt_get)
83
- n_bypass_channels = opt_get(opt, ['network_G', 'flow', 'levelConditional', 'n_channels'])
84
- conditional_channels[0] = n_rrdb
85
- for level in range(1, self.L + 1):
86
- # Level 1 gets conditionals from 2, 3, 4 => L - level
87
- # Level 2 gets conditionals from 3, 4
88
- # Level 3 gets conditionals from 4
89
- # Level 4 gets conditionals from None
90
- n_bypass = 0 if n_bypass_channels is None else (self.L - level) * n_bypass_channels
91
- conditional_channels[level] = n_rrdb + n_bypass
92
-
93
- # Upsampler
94
- for level in range(1, self.L + 1):
95
- # 1. Squeeze
96
- H, W = self.arch_squeeze(H, W)
97
-
98
- # 2. K FlowStep
99
- self.arch_additionalFlowAffine(H, LU_decomposed, W, actnorm_scale, hidden_channels, opt)
100
- self.arch_FlowStep(H, self.K[level], LU_decomposed, W, actnorm_scale, affineInCh, flow_coupling,
101
- flow_permutation,
102
- hidden_channels, normOpt, opt, opt_get,
103
- n_conditinal_channels=conditional_channels[level])
104
- # Split
105
- self.arch_split(H, W, level, self.L, opt, opt_get)
106
-
107
- if opt_get(opt, ['network_G', 'flow', 'split', 'enable']):
108
- self.f = f_conv2d_bias(affineInCh, 2 * 3 * 64 // 2 // 2)
109
- else:
110
- self.f = f_conv2d_bias(affineInCh, 2 * 3 * 64)
111
-
112
- self.H = H
113
- self.W = W
114
- self.scaleH = 160 / H
115
- self.scaleW = 160 / W
116
-
117
- def get_n_rrdb_channels(self, opt, opt_get):
118
- blocks = opt_get(opt, ['network_G', 'flow', 'stackRRDB', 'blocks'])
119
- n_rrdb = 64 if blocks is None else (len(blocks) + 1) * 64
120
- return n_rrdb
121
-
122
- def arch_FlowStep(self, H, K, LU_decomposed, W, actnorm_scale, affineInCh, flow_coupling, flow_permutation,
123
- hidden_channels, normOpt, opt, opt_get, n_conditinal_channels=None):
124
- condAff = self.get_condAffSetting(opt, opt_get)
125
- if condAff is not None:
126
- condAff['in_channels_rrdb'] = n_conditinal_channels
127
-
128
- for k in range(K):
129
- position_name = get_position_name(H, self.opt['scale'])
130
- if normOpt: normOpt['position'] = position_name
131
-
132
- self.layers.append(
133
- FlowStep(in_channels=self.C,
134
- hidden_channels=hidden_channels,
135
- actnorm_scale=actnorm_scale,
136
- flow_permutation=flow_permutation,
137
- flow_coupling=flow_coupling,
138
- acOpt=condAff,
139
- position=position_name,
140
- LU_decomposed=LU_decomposed, opt=opt, idx=k, normOpt=normOpt))
141
- self.output_shapes.append(
142
- [-1, self.C, H, W])
143
-
144
- def get_condAffSetting(self, opt, opt_get):
145
- condAff = opt_get(opt, ['network_G', 'flow', 'condAff']) or None
146
- condAff = opt_get(opt, ['network_G', 'flow', 'condFtAffine']) or condAff
147
- return condAff
148
-
149
- def arch_split(self, H, W, L, levels, opt, opt_get):
150
- correct_splits = opt_get(opt, ['network_G', 'flow', 'split', 'correct_splits'], False)
151
- correction = 0 if correct_splits else 1
152
- if opt_get(opt, ['network_G', 'flow', 'split', 'enable']) and L < levels - correction:
153
- logs_eps = opt_get(opt, ['network_G', 'flow', 'split', 'logs_eps']) or 0
154
- consume_ratio = opt_get(opt, ['network_G', 'flow', 'split', 'consume_ratio']) or 0.5
155
- position_name = get_position_name(H, self.opt['scale'])
156
- position = position_name if opt_get(opt, ['network_G', 'flow', 'split', 'conditional']) else None
157
- cond_channels = opt_get(opt, ['network_G', 'flow', 'split', 'cond_channels'])
158
- cond_channels = 0 if cond_channels is None else cond_channels
159
-
160
- t = opt_get(opt, ['network_G', 'flow', 'split', 'type'], 'Split2d')
161
-
162
- if t == 'Split2d':
163
- split = models.modules.Split.Split2d(num_channels=self.C, logs_eps=logs_eps, position=position,
164
- cond_channels=cond_channels, consume_ratio=consume_ratio, opt=opt)
165
- self.layers.append(split)
166
- self.output_shapes.append([-1, split.num_channels_pass, H, W])
167
- self.C = split.num_channels_pass
168
-
169
- def arch_additionalFlowAffine(self, H, LU_decomposed, W, actnorm_scale, hidden_channels, opt):
170
- if 'additionalFlowNoAffine' in opt['network_G']['flow']:
171
- n_additionalFlowNoAffine = int(opt['network_G']['flow']['additionalFlowNoAffine'])
172
- for _ in range(n_additionalFlowNoAffine):
173
- self.layers.append(
174
- FlowStep(in_channels=self.C,
175
- hidden_channels=hidden_channels,
176
- actnorm_scale=actnorm_scale,
177
- flow_permutation='invconv',
178
- flow_coupling='noCoupling',
179
- LU_decomposed=LU_decomposed, opt=opt))
180
- self.output_shapes.append(
181
- [-1, self.C, H, W])
182
-
183
- def arch_squeeze(self, H, W):
184
- self.C, H, W = self.C * 4, H // 2, W // 2
185
- self.layers.append(flow.SqueezeLayer(factor=2))
186
- self.output_shapes.append([-1, self.C, H, W])
187
- return H, W
188
-
189
- def get_flow_permutation(self, flow_permutation, opt):
190
- flow_permutation = opt['network_G']['flow'].get('flow_permutation', 'invconv')
191
- return flow_permutation
192
-
193
- def get_affineInCh(self, opt_get):
194
- affineInCh = opt_get(self.opt, ['network_G', 'flow', 'stackRRDB', 'blocks']) or []
195
- affineInCh = (len(affineInCh) + 1) * 64
196
- return affineInCh
197
-
198
- def check_image_shape(self):
199
- assert self.C == 1 or self.C == 3, ("image_shape should be HWC, like (64, 64, 3)"
200
- "self.C == 1 or self.C == 3")
201
-
202
- def forward(self, gt=None, rrdbResults=None, z=None, epses=None, logdet=0., reverse=False, eps_std=None,
203
- y_onehot=None):
204
-
205
- if reverse:
206
- epses_copy = [eps for eps in epses] if isinstance(epses, list) else epses
207
-
208
- sr, logdet = self.decode(rrdbResults, z, eps_std, epses=epses_copy, logdet=logdet, y_onehot=y_onehot)
209
- return sr, logdet
210
- else:
211
- assert gt is not None
212
- assert rrdbResults is not None
213
- z, logdet = self.encode(gt, rrdbResults, logdet=logdet, epses=epses, y_onehot=y_onehot)
214
-
215
- return z, logdet
216
-
217
- def encode(self, gt, rrdbResults, logdet=0.0, epses=None, y_onehot=None):
218
- fl_fea = gt
219
- reverse = False
220
- level_conditionals = {}
221
- bypasses = {}
222
-
223
- L = opt_get(self.opt, ['network_G', 'flow', 'L'])
224
-
225
- for level in range(1, L + 1):
226
- bypasses[level] = torch.nn.functional.interpolate(gt, scale_factor=2 ** -level, mode='bilinear', align_corners=False)
227
-
228
- for layer, shape in zip(self.layers, self.output_shapes):
229
- size = shape[2]
230
- level = int(np.log(160 / size) / np.log(2))
231
-
232
- if level > 0 and level not in level_conditionals.keys():
233
- level_conditionals[level] = rrdbResults[self.levelToName[level]]
234
-
235
- level_conditionals[level] = rrdbResults[self.levelToName[level]]
236
-
237
- if isinstance(layer, FlowStep):
238
- fl_fea, logdet = layer(fl_fea, logdet, reverse=reverse, rrdbResults=level_conditionals[level])
239
- elif isinstance(layer, Split2d):
240
- fl_fea, logdet = self.forward_split2d(epses, fl_fea, layer, logdet, reverse, level_conditionals[level],
241
- y_onehot=y_onehot)
242
- else:
243
- fl_fea, logdet = layer(fl_fea, logdet, reverse=reverse)
244
-
245
- z = fl_fea
246
-
247
- if not isinstance(epses, list):
248
- return z, logdet
249
-
250
- epses.append(z)
251
- return epses, logdet
252
-
253
- def forward_preFlow(self, fl_fea, logdet, reverse):
254
- if hasattr(self, 'preFlow'):
255
- for l in self.preFlow:
256
- fl_fea, logdet = l(fl_fea, logdet, reverse=reverse)
257
- return fl_fea, logdet
258
-
259
- def forward_split2d(self, epses, fl_fea, layer, logdet, reverse, rrdbResults, y_onehot=None):
260
- ft = None if layer.position is None else rrdbResults[layer.position]
261
- fl_fea, logdet, eps = layer(fl_fea, logdet, reverse=reverse, eps=epses, ft=ft, y_onehot=y_onehot)
262
-
263
- if isinstance(epses, list):
264
- epses.append(eps)
265
- return fl_fea, logdet
266
-
267
- def decode(self, rrdbResults, z, eps_std=None, epses=None, logdet=0.0, y_onehot=None):
268
- z = epses.pop() if isinstance(epses, list) else z
269
-
270
- fl_fea = z
271
- # debug.imwrite("fl_fea", fl_fea)
272
- bypasses = {}
273
- level_conditionals = {}
274
- if not opt_get(self.opt, ['network_G', 'flow', 'levelConditional', 'conditional']) == True:
275
- for level in range(self.L + 1):
276
- level_conditionals[level] = rrdbResults[self.levelToName[level]]
277
-
278
- for layer, shape in zip(reversed(self.layers), reversed(self.output_shapes)):
279
- size = shape[2]
280
- level = int(np.log(160 / size) / np.log(2))
281
- # size = fl_fea.shape[2]
282
- # level = int(np.log(160 / size) / np.log(2))
283
-
284
- if isinstance(layer, Split2d):
285
- fl_fea, logdet = self.forward_split2d_reverse(eps_std, epses, fl_fea, layer,
286
- rrdbResults[self.levelToName[level]], logdet=logdet,
287
- y_onehot=y_onehot)
288
- elif isinstance(layer, FlowStep):
289
- fl_fea, logdet = layer(fl_fea, logdet=logdet, reverse=True, rrdbResults=level_conditionals[level])
290
- else:
291
- fl_fea, logdet = layer(fl_fea, logdet=logdet, reverse=True)
292
-
293
- sr = fl_fea
294
-
295
- assert sr.shape[1] == 3
296
- return sr, logdet
297
-
298
- def forward_split2d_reverse(self, eps_std, epses, fl_fea, layer, rrdbResults, logdet, y_onehot=None):
299
- ft = None if layer.position is None else rrdbResults[layer.position]
300
- fl_fea, logdet = layer(fl_fea, logdet=logdet, reverse=True,
301
- eps=epses.pop() if isinstance(epses, list) else None,
302
- eps_std=eps_std, ft=ft, y_onehot=y_onehot)
303
- return fl_fea, logdet
304
-
305
-
306
- def get_position_name(H, scale):
307
- downscale_factor = 160 // H
308
- position_name = 'fea_up{}'.format(scale / downscale_factor)
309
- return position_name
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/models/modules/Permutations.py DELETED
@@ -1,58 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- #
15
- # This file contains content licensed by https://github.com/chaiyujin/glow-pytorch/blob/master/LICENSE
16
-
17
- import numpy as np
18
- import torch
19
- from torch import nn as nn
20
- from torch.nn import functional as F
21
-
22
- from models.modules import thops
23
-
24
-
25
- class InvertibleConv1x1(nn.Module):
26
- def __init__(self, num_channels, LU_decomposed=False):
27
- super().__init__()
28
- w_shape = [num_channels, num_channels]
29
- w_init = np.linalg.qr(np.random.randn(*w_shape))[0].astype(np.float32)
30
- self.register_parameter("weight", nn.Parameter(torch.Tensor(w_init)))
31
- self.w_shape = w_shape
32
- self.LU = LU_decomposed
33
-
34
- def get_weight(self, input, reverse):
35
- w_shape = self.w_shape
36
- pixels = thops.pixels(input)
37
- dlogdet = torch.slogdet(self.weight)[1] * pixels
38
- if not reverse:
39
- weight = self.weight.view(w_shape[0], w_shape[1], 1, 1)
40
- else:
41
- weight = torch.inverse(self.weight.double()).float() \
42
- .view(w_shape[0], w_shape[1], 1, 1)
43
- return weight, dlogdet
44
- def forward(self, input, logdet=None, reverse=False):
45
- """
46
- log-det = log|abs(|W|)| * pixels
47
- """
48
- weight, dlogdet = self.get_weight(input, reverse)
49
- if not reverse:
50
- z = F.conv2d(input, weight)
51
- if logdet is not None:
52
- logdet = logdet + dlogdet
53
- return z, logdet
54
- else:
55
- z = F.conv2d(input, weight)
56
- if logdet is not None:
57
- logdet = logdet - dlogdet
58
- return z, logdet
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/models/modules/RRDBNet_arch.py DELETED
@@ -1,148 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- #
15
- # This file contains content licensed by https://github.com/chaiyujin/glow-pytorch/blob/master/LICENSE
16
-
17
- import functools
18
- import torch
19
- import torch.nn as nn
20
- import torch.nn.functional as F
21
- import models.modules.module_util as mutil
22
- from utils.util import opt_get
23
-
24
-
25
- class ResidualDenseBlock_5C(nn.Module):
26
- def __init__(self, nf=64, gc=32, bias=True):
27
- super(ResidualDenseBlock_5C, self).__init__()
28
- # gc: growth channel, i.e. intermediate channels
29
- self.conv1 = nn.Conv2d(nf, gc, 3, 1, 1, bias=bias)
30
- self.conv2 = nn.Conv2d(nf + gc, gc, 3, 1, 1, bias=bias)
31
- self.conv3 = nn.Conv2d(nf + 2 * gc, gc, 3, 1, 1, bias=bias)
32
- self.conv4 = nn.Conv2d(nf + 3 * gc, gc, 3, 1, 1, bias=bias)
33
- self.conv5 = nn.Conv2d(nf + 4 * gc, nf, 3, 1, 1, bias=bias)
34
- self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
35
-
36
- # initialization
37
- mutil.initialize_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1)
38
-
39
- def forward(self, x):
40
- x1 = self.lrelu(self.conv1(x))
41
- x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
42
- x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
43
- x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
44
- x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
45
- return x5 * 0.2 + x
46
-
47
-
48
- class RRDB(nn.Module):
49
- '''Residual in Residual Dense Block'''
50
-
51
- def __init__(self, nf, gc=32):
52
- super(RRDB, self).__init__()
53
- self.RDB1 = ResidualDenseBlock_5C(nf, gc)
54
- self.RDB2 = ResidualDenseBlock_5C(nf, gc)
55
- self.RDB3 = ResidualDenseBlock_5C(nf, gc)
56
-
57
- def forward(self, x):
58
- out = self.RDB1(x)
59
- out = self.RDB2(out)
60
- out = self.RDB3(out)
61
- return out * 0.2 + x
62
-
63
-
64
- class RRDBNet(nn.Module):
65
- def __init__(self, in_nc, out_nc, nf, nb, gc=32, scale=4, opt=None):
66
- self.opt = opt
67
- super(RRDBNet, self).__init__()
68
- RRDB_block_f = functools.partial(RRDB, nf=nf, gc=gc)
69
- self.scale = scale
70
-
71
- self.conv_first = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
72
- self.RRDB_trunk = mutil.make_layer(RRDB_block_f, nb)
73
- self.trunk_conv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
74
- #### upsampling
75
- self.upconv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
76
- self.upconv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
77
- if self.scale >= 8:
78
- self.upconv3 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
79
- if self.scale >= 16:
80
- self.upconv4 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
81
- if self.scale >= 32:
82
- self.upconv5 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
83
-
84
- self.HRconv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
85
- self.conv_last = nn.Conv2d(nf, out_nc, 3, 1, 1, bias=True)
86
-
87
- self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
88
-
89
- def forward(self, x, get_steps=False):
90
- fea = self.conv_first(x)
91
-
92
- block_idxs = opt_get(self.opt, ['network_G', 'flow', 'stackRRDB', 'blocks']) or []
93
- block_results = {}
94
-
95
- for idx, m in enumerate(self.RRDB_trunk.children()):
96
- fea = m(fea)
97
- for b in block_idxs:
98
- if b == idx:
99
- block_results["block_{}".format(idx)] = fea
100
-
101
- trunk = self.trunk_conv(fea)
102
-
103
- last_lr_fea = fea + trunk
104
-
105
- fea_up2 = self.upconv1(F.interpolate(last_lr_fea, scale_factor=2, mode='nearest'))
106
- fea = self.lrelu(fea_up2)
107
-
108
- fea_up4 = self.upconv2(F.interpolate(fea, scale_factor=2, mode='nearest'))
109
- fea = self.lrelu(fea_up4)
110
-
111
- fea_up8 = None
112
- fea_up16 = None
113
- fea_up32 = None
114
-
115
- if self.scale >= 8:
116
- fea_up8 = self.upconv3(F.interpolate(fea, scale_factor=2, mode='nearest'))
117
- fea = self.lrelu(fea_up8)
118
- if self.scale >= 16:
119
- fea_up16 = self.upconv4(F.interpolate(fea, scale_factor=2, mode='nearest'))
120
- fea = self.lrelu(fea_up16)
121
- if self.scale >= 32:
122
- fea_up32 = self.upconv5(F.interpolate(fea, scale_factor=2, mode='nearest'))
123
- fea = self.lrelu(fea_up32)
124
-
125
- out = self.conv_last(self.lrelu(self.HRconv(fea)))
126
-
127
- results = {'last_lr_fea': last_lr_fea,
128
- 'fea_up1': last_lr_fea,
129
- 'fea_up2': fea_up2,
130
- 'fea_up4': fea_up4,
131
- 'fea_up8': fea_up8,
132
- 'fea_up16': fea_up16,
133
- 'fea_up32': fea_up32,
134
- 'out': out}
135
-
136
- fea_up0_en = opt_get(self.opt, ['network_G', 'flow', 'fea_up0']) or False
137
- if fea_up0_en:
138
- results['fea_up0'] = F.interpolate(last_lr_fea, scale_factor=1/2, mode='bilinear', align_corners=False, recompute_scale_factor=True)
139
- fea_upn1_en = opt_get(self.opt, ['network_G', 'flow', 'fea_up-1']) or False
140
- if fea_upn1_en:
141
- results['fea_up-1'] = F.interpolate(last_lr_fea, scale_factor=1/4, mode='bilinear', align_corners=False, recompute_scale_factor=True)
142
-
143
- if get_steps:
144
- for k, v in block_results.items():
145
- results[k] = v
146
- return results
147
- else:
148
- return out
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/models/modules/SRFlowNet_arch.py DELETED
@@ -1,158 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- #
15
- # This file contains content licensed by https://github.com/chaiyujin/glow-pytorch/blob/master/LICENSE
16
-
17
- import math
18
-
19
- import torch
20
- import torch.nn as nn
21
- import torch.nn.functional as F
22
- import numpy as np
23
- from models.modules.RRDBNet_arch import RRDBNet
24
- from models.modules.FlowUpsamplerNet import FlowUpsamplerNet
25
- import models.modules.thops as thops
26
- import models.modules.flow as flow
27
- from utils.util import opt_get
28
-
29
-
30
- class SRFlowNet(nn.Module):
31
- def __init__(self, in_nc, out_nc, nf, nb, gc=32, scale=4, K=None, opt=None, step=None):
32
- super(SRFlowNet, self).__init__()
33
-
34
- self.opt = opt
35
- self.quant = 255 if opt_get(opt, ['datasets', 'train', 'quant']) is \
36
- None else opt_get(opt, ['datasets', 'train', 'quant'])
37
- self.RRDB = RRDBNet(in_nc, out_nc, nf, nb, gc, scale, opt)
38
- hidden_channels = opt_get(opt, ['network_G', 'flow', 'hidden_channels'])
39
- hidden_channels = hidden_channels or 64
40
- self.RRDB_training = True # Default is true
41
-
42
- train_RRDB_delay = opt_get(self.opt, ['network_G', 'train_RRDB_delay'])
43
- set_RRDB_to_train = False
44
- if set_RRDB_to_train:
45
- self.set_rrdb_training(True)
46
-
47
- self.flowUpsamplerNet = \
48
- FlowUpsamplerNet((160, 160, 3), hidden_channels, K,
49
- flow_coupling=opt['network_G']['flow']['coupling'], opt=opt)
50
- self.i = 0
51
-
52
- def set_rrdb_training(self, trainable):
53
- if self.RRDB_training != trainable:
54
- for p in self.RRDB.parameters():
55
- p.requires_grad = trainable
56
- self.RRDB_training = trainable
57
- return True
58
- return False
59
-
60
- def forward(self, gt=None, lr=None, z=None, eps_std=None, reverse=False, epses=None, reverse_with_grad=False,
61
- lr_enc=None,
62
- add_gt_noise=False, step=None, y_label=None):
63
- if not reverse:
64
- return self.normal_flow(gt, lr, epses=epses, lr_enc=lr_enc, add_gt_noise=add_gt_noise, step=step,
65
- y_onehot=y_label)
66
- else:
67
- # assert lr.shape[0] == 1
68
- assert lr.shape[1] == 3
69
- # assert lr.shape[2] == 20
70
- # assert lr.shape[3] == 20
71
- # assert z.shape[0] == 1
72
- # assert z.shape[1] == 3 * 8 * 8
73
- # assert z.shape[2] == 20
74
- # assert z.shape[3] == 20
75
- if reverse_with_grad:
76
- return self.reverse_flow(lr, z, y_onehot=y_label, eps_std=eps_std, epses=epses, lr_enc=lr_enc,
77
- add_gt_noise=add_gt_noise)
78
- else:
79
- with torch.no_grad():
80
- return self.reverse_flow(lr, z, y_onehot=y_label, eps_std=eps_std, epses=epses, lr_enc=lr_enc,
81
- add_gt_noise=add_gt_noise)
82
-
83
- def normal_flow(self, gt, lr, y_onehot=None, epses=None, lr_enc=None, add_gt_noise=True, step=None):
84
- if lr_enc is None:
85
- lr_enc = self.rrdbPreprocessing(lr)
86
-
87
- logdet = torch.zeros_like(gt[:, 0, 0, 0])
88
- pixels = thops.pixels(gt)
89
-
90
- z = gt
91
-
92
- if add_gt_noise:
93
- # Setup
94
- noiseQuant = opt_get(self.opt, ['network_G', 'flow', 'augmentation', 'noiseQuant'], True)
95
- if noiseQuant:
96
- z = z + ((torch.rand(z.shape, device=z.device) - 0.5) / self.quant)
97
- logdet = logdet + float(-np.log(self.quant) * pixels)
98
-
99
- # Encode
100
- epses, logdet = self.flowUpsamplerNet(rrdbResults=lr_enc, gt=z, logdet=logdet, reverse=False, epses=epses,
101
- y_onehot=y_onehot)
102
-
103
- objective = logdet.clone()
104
-
105
- if isinstance(epses, (list, tuple)):
106
- z = epses[-1]
107
- else:
108
- z = epses
109
-
110
- objective = objective + flow.GaussianDiag.logp(None, None, z)
111
-
112
- nll = (-objective) / float(np.log(2.) * pixels)
113
-
114
- if isinstance(epses, list):
115
- return epses, nll, logdet
116
- return z, nll, logdet
117
-
118
- def rrdbPreprocessing(self, lr):
119
- rrdbResults = self.RRDB(lr, get_steps=True)
120
- block_idxs = opt_get(self.opt, ['network_G', 'flow', 'stackRRDB', 'blocks']) or []
121
- if len(block_idxs) > 0:
122
- concat = torch.cat([rrdbResults["block_{}".format(idx)] for idx in block_idxs], dim=1)
123
-
124
- if opt_get(self.opt, ['network_G', 'flow', 'stackRRDB', 'concat']) or False:
125
- keys = ['last_lr_fea', 'fea_up1', 'fea_up2', 'fea_up4']
126
- if 'fea_up0' in rrdbResults.keys():
127
- keys.append('fea_up0')
128
- if 'fea_up-1' in rrdbResults.keys():
129
- keys.append('fea_up-1')
130
- if self.opt['scale'] >= 8:
131
- keys.append('fea_up8')
132
- if self.opt['scale'] == 16:
133
- keys.append('fea_up16')
134
- for k in keys:
135
- h = rrdbResults[k].shape[2]
136
- w = rrdbResults[k].shape[3]
137
- rrdbResults[k] = torch.cat([rrdbResults[k], F.interpolate(concat, (h, w))], dim=1)
138
- return rrdbResults
139
-
140
- def get_score(self, disc_loss_sigma, z):
141
- score_real = 0.5 * (1 - 1 / (disc_loss_sigma ** 2)) * thops.sum(z ** 2, dim=[1, 2, 3]) - \
142
- z.shape[1] * z.shape[2] * z.shape[3] * math.log(disc_loss_sigma)
143
- return -score_real
144
-
145
- def reverse_flow(self, lr, z, y_onehot, eps_std, epses=None, lr_enc=None, add_gt_noise=True):
146
- logdet = torch.zeros_like(lr[:, 0, 0, 0])
147
- pixels = thops.pixels(lr) * self.opt['scale'] ** 2
148
-
149
- if add_gt_noise:
150
- logdet = logdet - float(-np.log(self.quant) * pixels)
151
-
152
- if lr_enc is None:
153
- lr_enc = self.rrdbPreprocessing(lr)
154
-
155
- x, logdet = self.flowUpsamplerNet(rrdbResults=lr_enc, z=z, eps_std=eps_std, reverse=True, epses=epses,
156
- logdet=logdet)
157
-
158
- return x, logdet
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/models/modules/Split.py DELETED
@@ -1,86 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- #
15
- # This file contains content licensed by https://github.com/chaiyujin/glow-pytorch/blob/master/LICENSE
16
-
17
- import torch
18
- from torch import nn as nn
19
-
20
- from models.modules import thops
21
- from models.modules.FlowStep import FlowStep
22
- from models.modules.flow import Conv2dZeros, GaussianDiag
23
- from utils.util import opt_get
24
-
25
-
26
- class Split2d(nn.Module):
27
- def __init__(self, num_channels, logs_eps=0, cond_channels=0, position=None, consume_ratio=0.5, opt=None):
28
- super().__init__()
29
-
30
- self.num_channels_consume = int(round(num_channels * consume_ratio))
31
- self.num_channels_pass = num_channels - self.num_channels_consume
32
-
33
- self.conv = Conv2dZeros(in_channels=self.num_channels_pass + cond_channels,
34
- out_channels=self.num_channels_consume * 2)
35
- self.logs_eps = logs_eps
36
- self.position = position
37
- self.opt = opt
38
-
39
- def split2d_prior(self, z, ft):
40
- if ft is not None:
41
- z = torch.cat([z, ft], dim=1)
42
- h = self.conv(z)
43
- return thops.split_feature(h, "cross")
44
-
45
- def exp_eps(self, logs):
46
- return torch.exp(logs) + self.logs_eps
47
-
48
- def forward(self, input, logdet=0., reverse=False, eps_std=None, eps=None, ft=None, y_onehot=None):
49
- if not reverse:
50
- # self.input = input
51
- z1, z2 = self.split_ratio(input)
52
- mean, logs = self.split2d_prior(z1, ft)
53
-
54
- eps = (z2 - mean) / self.exp_eps(logs)
55
-
56
- logdet = logdet + self.get_logdet(logs, mean, z2)
57
-
58
- # print(logs.shape, mean.shape, z2.shape)
59
- # self.eps = eps
60
- # print('split, enc eps:', eps)
61
- return z1, logdet, eps
62
- else:
63
- z1 = input
64
- mean, logs = self.split2d_prior(z1, ft)
65
-
66
- if eps is None:
67
- #print("WARNING: eps is None, generating eps untested functionality!")
68
- eps = GaussianDiag.sample_eps(mean.shape, eps_std)
69
-
70
- eps = eps.to(mean.device)
71
- z2 = mean + self.exp_eps(logs) * eps
72
-
73
- z = thops.cat_feature(z1, z2)
74
- logdet = logdet - self.get_logdet(logs, mean, z2)
75
-
76
- return z, logdet
77
- # return z, logdet, eps
78
-
79
- def get_logdet(self, logs, mean, z2):
80
- logdet_diff = GaussianDiag.logp(mean, logs, z2)
81
- # print("Split2D: logdet diff", logdet_diff.item())
82
- return logdet_diff
83
-
84
- def split_ratio(self, input):
85
- z1, z2 = input[:, :self.num_channels_pass, ...], input[:, self.num_channels_pass:, ...]
86
- return z1, z2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/models/modules/__init__.py DELETED
File without changes
models/SRFlow/code/models/modules/flow.py DELETED
@@ -1,166 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- #
15
- # This file contains content licensed by https://github.com/chaiyujin/glow-pytorch/blob/master/LICENSE
16
-
17
- import torch
18
- import torch.nn as nn
19
- import torch.nn.functional as F
20
- import numpy as np
21
-
22
- from models.modules.FlowActNorms import ActNorm2d
23
- from . import thops
24
-
25
-
26
- class Conv2d(nn.Conv2d):
27
- pad_dict = {
28
- "same": lambda kernel, stride: [((k - 1) * s + 1) // 2 for k, s in zip(kernel, stride)],
29
- "valid": lambda kernel, stride: [0 for _ in kernel]
30
- }
31
-
32
- @staticmethod
33
- def get_padding(padding, kernel_size, stride):
34
- # make paddding
35
- if isinstance(padding, str):
36
- if isinstance(kernel_size, int):
37
- kernel_size = [kernel_size, kernel_size]
38
- if isinstance(stride, int):
39
- stride = [stride, stride]
40
- padding = padding.lower()
41
- try:
42
- padding = Conv2d.pad_dict[padding](kernel_size, stride)
43
- except KeyError:
44
- raise ValueError("{} is not supported".format(padding))
45
- return padding
46
-
47
- def __init__(self, in_channels, out_channels,
48
- kernel_size=[3, 3], stride=[1, 1],
49
- padding="same", do_actnorm=True, weight_std=0.05):
50
- padding = Conv2d.get_padding(padding, kernel_size, stride)
51
- super().__init__(in_channels, out_channels, kernel_size, stride,
52
- padding, bias=(not do_actnorm))
53
- # init weight with std
54
- self.weight.data.normal_(mean=0.0, std=weight_std)
55
- if not do_actnorm:
56
- self.bias.data.zero_()
57
- else:
58
- self.actnorm = ActNorm2d(out_channels)
59
- self.do_actnorm = do_actnorm
60
-
61
- def forward(self, input):
62
- x = super().forward(input)
63
- if self.do_actnorm:
64
- x, _ = self.actnorm(x)
65
- return x
66
-
67
-
68
- class Conv2dZeros(nn.Conv2d):
69
- def __init__(self, in_channels, out_channels,
70
- kernel_size=[3, 3], stride=[1, 1],
71
- padding="same", logscale_factor=3):
72
- padding = Conv2d.get_padding(padding, kernel_size, stride)
73
- super().__init__(in_channels, out_channels, kernel_size, stride, padding)
74
- # logscale_factor
75
- self.logscale_factor = logscale_factor
76
- self.register_parameter("logs", nn.Parameter(torch.zeros(out_channels, 1, 1)))
77
- # init
78
- self.weight.data.zero_()
79
- self.bias.data.zero_()
80
-
81
- def forward(self, input):
82
- output = super().forward(input)
83
- return output * torch.exp(self.logs * self.logscale_factor)
84
-
85
-
86
- class GaussianDiag:
87
- Log2PI = float(np.log(2 * np.pi))
88
-
89
- @staticmethod
90
- def likelihood(mean, logs, x):
91
- """
92
- lnL = -1/2 * { ln|Var| + ((X - Mu)^T)(Var^-1)(X - Mu) + kln(2*PI) }
93
- k = 1 (Independent)
94
- Var = logs ** 2
95
- """
96
- if mean is None and logs is None:
97
- return -0.5 * (x ** 2 + GaussianDiag.Log2PI)
98
- else:
99
- return -0.5 * (logs * 2. + ((x - mean) ** 2) / torch.exp(logs * 2.) + GaussianDiag.Log2PI)
100
-
101
- @staticmethod
102
- def logp(mean, logs, x):
103
- likelihood = GaussianDiag.likelihood(mean, logs, x)
104
- return thops.sum(likelihood, dim=[1, 2, 3])
105
-
106
- @staticmethod
107
- def sample(mean, logs, eps_std=None):
108
- eps_std = eps_std or 1
109
- eps = torch.normal(mean=torch.zeros_like(mean),
110
- std=torch.ones_like(logs) * eps_std)
111
- return mean + torch.exp(logs) * eps
112
-
113
- @staticmethod
114
- def sample_eps(shape, eps_std, seed=None):
115
- if seed is not None:
116
- torch.manual_seed(seed)
117
- eps = torch.normal(mean=torch.zeros(shape),
118
- std=torch.ones(shape) * eps_std)
119
- return eps
120
-
121
-
122
- def squeeze2d(input, factor=2):
123
- assert factor >= 1 and isinstance(factor, int)
124
- if factor == 1:
125
- return input
126
- size = input.size()
127
- B = size[0]
128
- C = size[1]
129
- H = size[2]
130
- W = size[3]
131
- assert H % factor == 0 and W % factor == 0, "{}".format((H, W, factor))
132
- x = input.view(B, C, H // factor, factor, W // factor, factor)
133
- x = x.permute(0, 1, 3, 5, 2, 4).contiguous()
134
- x = x.view(B, C * factor * factor, H // factor, W // factor)
135
- return x
136
-
137
-
138
- def unsqueeze2d(input, factor=2):
139
- assert factor >= 1 and isinstance(factor, int)
140
- factor2 = factor ** 2
141
- if factor == 1:
142
- return input
143
- size = input.size()
144
- B = size[0]
145
- C = size[1]
146
- H = size[2]
147
- W = size[3]
148
- assert C % (factor2) == 0, "{}".format(C)
149
- x = input.view(B, C // factor2, factor, factor, H, W)
150
- x = x.permute(0, 1, 4, 2, 5, 3).contiguous()
151
- x = x.view(B, C // (factor2), H * factor, W * factor)
152
- return x
153
-
154
-
155
- class SqueezeLayer(nn.Module):
156
- def __init__(self, factor):
157
- super().__init__()
158
- self.factor = factor
159
-
160
- def forward(self, input, logdet=None, reverse=False):
161
- if not reverse:
162
- output = squeeze2d(input, self.factor) # Squeeze in forward
163
- return output, logdet
164
- else:
165
- output = unsqueeze2d(input, self.factor)
166
- return output, logdet
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/models/modules/glow_arch.py DELETED
@@ -1,28 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- #
15
- # This file contains content licensed by https://github.com/chaiyujin/glow-pytorch/blob/master/LICENSE
16
-
17
- import torch.nn as nn
18
-
19
-
20
- def f_conv2d_bias(in_channels, out_channels):
21
- def padding_same(kernel, stride):
22
- return [((k - 1) * s + 1) // 2 for k, s in zip(kernel, stride)]
23
-
24
- padding = padding_same([3, 3], [1, 1])
25
- assert padding == [1, 1], padding
26
- return nn.Sequential(
27
- nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=[3, 3], stride=1, padding=1,
28
- bias=True))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/models/modules/loss.py DELETED
@@ -1,90 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- #
15
- # This file contains content licensed by https://github.com/chaiyujin/glow-pytorch/blob/master/LICENSE
16
-
17
- import torch
18
- import torch.nn as nn
19
-
20
-
21
- class CharbonnierLoss(nn.Module):
22
- """Charbonnier Loss (L1)"""
23
-
24
- def __init__(self, eps=1e-6):
25
- super(CharbonnierLoss, self).__init__()
26
- self.eps = eps
27
-
28
- def forward(self, x, y):
29
- diff = x - y
30
- loss = torch.sum(torch.sqrt(diff * diff + self.eps))
31
- return loss
32
-
33
-
34
- # Define GAN loss: [vanilla | lsgan | wgan-gp]
35
- class GANLoss(nn.Module):
36
- def __init__(self, gan_type, real_label_val=1.0, fake_label_val=0.0):
37
- super(GANLoss, self).__init__()
38
- self.gan_type = gan_type.lower()
39
- self.real_label_val = real_label_val
40
- self.fake_label_val = fake_label_val
41
-
42
- if self.gan_type == 'gan' or self.gan_type == 'ragan':
43
- self.loss = nn.BCEWithLogitsLoss()
44
- elif self.gan_type == 'lsgan':
45
- self.loss = nn.MSELoss()
46
- elif self.gan_type == 'wgan-gp':
47
-
48
- def wgan_loss(input, target):
49
- # target is boolean
50
- return -1 * input.mean() if target else input.mean()
51
-
52
- self.loss = wgan_loss
53
- else:
54
- raise NotImplementedError('GAN type [{:s}] is not found'.format(self.gan_type))
55
-
56
- def get_target_label(self, input, target_is_real):
57
- if self.gan_type == 'wgan-gp':
58
- return target_is_real
59
- if target_is_real:
60
- return torch.empty_like(input).fill_(self.real_label_val)
61
- else:
62
- return torch.empty_like(input).fill_(self.fake_label_val)
63
-
64
- def forward(self, input, target_is_real):
65
- target_label = self.get_target_label(input, target_is_real)
66
- loss = self.loss(input, target_label)
67
- return loss
68
-
69
-
70
- class GradientPenaltyLoss(nn.Module):
71
- def __init__(self, device=torch.device('cpu')):
72
- super(GradientPenaltyLoss, self).__init__()
73
- self.register_buffer('grad_outputs', torch.Tensor())
74
- self.grad_outputs = self.grad_outputs.to(device)
75
-
76
- def get_grad_outputs(self, input):
77
- if self.grad_outputs.size() != input.size():
78
- self.grad_outputs.resize_(input.size()).fill_(1.0)
79
- return self.grad_outputs
80
-
81
- def forward(self, interp, interp_crit):
82
- grad_outputs = self.get_grad_outputs(interp_crit)
83
- grad_interp = torch.autograd.grad(outputs=interp_crit, inputs=interp,
84
- grad_outputs=grad_outputs, create_graph=True,
85
- retain_graph=True, only_inputs=True)[0]
86
- grad_interp = grad_interp.view(grad_interp.size(0), -1)
87
- grad_interp_norm = grad_interp.norm(2, dim=1)
88
-
89
- loss = ((grad_interp_norm - 1)**2).mean()
90
- return loss
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/models/modules/module_util.py DELETED
@@ -1,95 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- #
15
- # This file contains content licensed by https://github.com/chaiyujin/glow-pytorch/blob/master/LICENSE
16
-
17
- import torch
18
- import torch.nn as nn
19
- import torch.nn.init as init
20
- import torch.nn.functional as F
21
-
22
-
23
- def initialize_weights(net_l, scale=1):
24
- if not isinstance(net_l, list):
25
- net_l = [net_l]
26
- for net in net_l:
27
- for m in net.modules():
28
- if isinstance(m, nn.Conv2d):
29
- init.kaiming_normal_(m.weight, a=0, mode='fan_in')
30
- m.weight.data *= scale # for residual block
31
- if m.bias is not None:
32
- m.bias.data.zero_()
33
- elif isinstance(m, nn.Linear):
34
- init.kaiming_normal_(m.weight, a=0, mode='fan_in')
35
- m.weight.data *= scale
36
- if m.bias is not None:
37
- m.bias.data.zero_()
38
- elif isinstance(m, nn.BatchNorm2d):
39
- init.constant_(m.weight, 1)
40
- init.constant_(m.bias.data, 0.0)
41
-
42
-
43
- def make_layer(block, n_layers):
44
- layers = []
45
- for _ in range(n_layers):
46
- layers.append(block())
47
- return nn.Sequential(*layers)
48
-
49
-
50
- class ResidualBlock_noBN(nn.Module):
51
- '''Residual block w/o BN
52
- ---Conv-ReLU-Conv-+-
53
- |________________|
54
- '''
55
-
56
- def __init__(self, nf=64):
57
- super(ResidualBlock_noBN, self).__init__()
58
- self.conv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
59
- self.conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
60
-
61
- # initialization
62
- initialize_weights([self.conv1, self.conv2], 0.1)
63
-
64
- def forward(self, x):
65
- identity = x
66
- out = F.relu(self.conv1(x), inplace=True)
67
- out = self.conv2(out)
68
- return identity + out
69
-
70
-
71
- def flow_warp(x, flow, interp_mode='bilinear', padding_mode='zeros'):
72
- """Warp an image or feature map with optical flow
73
- Args:
74
- x (Tensor): size (N, C, H, W)
75
- flow (Tensor): size (N, H, W, 2), normal value
76
- interp_mode (str): 'nearest' or 'bilinear'
77
- padding_mode (str): 'zeros' or 'border' or 'reflection'
78
-
79
- Returns:
80
- Tensor: warped image or feature map
81
- """
82
- assert x.size()[-2:] == flow.size()[1:3]
83
- B, C, H, W = x.size()
84
- # mesh grid
85
- grid_y, grid_x = torch.meshgrid(torch.arange(0, H), torch.arange(0, W))
86
- grid = torch.stack((grid_x, grid_y), 2).float() # W(x), H(y), 2
87
- grid.requires_grad = False
88
- grid = grid.type_as(x)
89
- vgrid = grid + flow
90
- # scale grid to [-1,1]
91
- vgrid_x = 2.0 * vgrid[:, :, :, 0] / max(W - 1, 1) - 1.0
92
- vgrid_y = 2.0 * vgrid[:, :, :, 1] / max(H - 1, 1) - 1.0
93
- vgrid_scaled = torch.stack((vgrid_x, vgrid_y), dim=3)
94
- output = F.grid_sample(x, vgrid_scaled, mode=interp_mode, padding_mode=padding_mode)
95
- return output
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/models/modules/thops.py DELETED
@@ -1,68 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- #
15
- # This file contains content licensed by https://github.com/chaiyujin/glow-pytorch/blob/master/LICENSE
16
-
17
- import torch
18
-
19
-
20
- def sum(tensor, dim=None, keepdim=False):
21
- if dim is None:
22
- # sum up all dim
23
- return torch.sum(tensor)
24
- else:
25
- if isinstance(dim, int):
26
- dim = [dim]
27
- dim = sorted(dim)
28
- for d in dim:
29
- tensor = tensor.sum(dim=d, keepdim=True)
30
- if not keepdim:
31
- for i, d in enumerate(dim):
32
- tensor.squeeze_(d-i)
33
- return tensor
34
-
35
-
36
- def mean(tensor, dim=None, keepdim=False):
37
- if dim is None:
38
- # mean all dim
39
- return torch.mean(tensor)
40
- else:
41
- if isinstance(dim, int):
42
- dim = [dim]
43
- dim = sorted(dim)
44
- for d in dim:
45
- tensor = tensor.mean(dim=d, keepdim=True)
46
- if not keepdim:
47
- for i, d in enumerate(dim):
48
- tensor.squeeze_(d-i)
49
- return tensor
50
-
51
-
52
- def split_feature(tensor, type="split"):
53
- """
54
- type = ["split", "cross"]
55
- """
56
- C = tensor.size(1)
57
- if type == "split":
58
- return tensor[:, :C // 2, ...], tensor[:, C // 2:, ...]
59
- elif type == "cross":
60
- return tensor[:, 0::2, ...], tensor[:, 1::2, ...]
61
-
62
-
63
- def cat_feature(tensor_a, tensor_b):
64
- return torch.cat((tensor_a, tensor_b), dim=1)
65
-
66
-
67
- def pixels(tensor):
68
- return int(tensor.size(2) * tensor.size(3))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/models/networks.py DELETED
@@ -1,105 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- #
15
- # This file contains content licensed by https://github.com/xinntao/BasicSR/blob/master/LICENSE/LICENSE
16
-
17
- import importlib
18
-
19
- import torch
20
- import logging
21
- import models.modules.RRDBNet_arch as RRDBNet_arch
22
-
23
- logger = logging.getLogger('base')
24
-
25
-
26
- def find_model_using_name(model_name):
27
- model_filename = "models.modules." + model_name + "_arch"
28
- modellib = importlib.import_module(model_filename)
29
-
30
- model = None
31
- target_model_name = model_name.replace('_Net', '')
32
- for name, cls in modellib.__dict__.items():
33
- if name.lower() == target_model_name.lower():
34
- model = cls
35
-
36
- if model is None:
37
- print(
38
- "In %s.py, there should be a subclass of torch.nn.Module with class name that matches %s." % (
39
- model_filename, target_model_name))
40
- exit(0)
41
-
42
- return model
43
-
44
-
45
- ####################
46
- # define network
47
- ####################
48
- #### Generator
49
- def define_G(opt):
50
- opt_net = opt['network_G']
51
- which_model = opt_net['which_model_G']
52
-
53
- if which_model == 'RRDBNet':
54
- netG = RRDBNet_arch.RRDBNet(in_nc=opt_net['in_nc'], out_nc=opt_net['out_nc'],
55
- nf=opt_net['nf'], nb=opt_net['nb'], scale=opt['scale'], opt=opt)
56
- elif which_model == 'EDSRNet':
57
- Arch = find_model_using_name(which_model)
58
- netG = Arch(scale=opt['scale'])
59
- elif which_model == 'rankSRGAN':
60
- Arch = find_model_using_name(which_model)
61
- netG = Arch(upscale=opt['scale'])
62
- # elif which_model == 'sft_arch': # SFT-GAN
63
- # netG = sft_arch.SFT_Net()
64
- else:
65
- raise NotImplementedError('Generator model [{:s}] not recognized'.format(which_model))
66
- return netG
67
-
68
-
69
- def define_Flow(opt, step):
70
- opt_net = opt['network_G']
71
- which_model = opt_net['which_model_G']
72
-
73
- Arch = find_model_using_name(which_model)
74
- netG = Arch(in_nc=opt_net['in_nc'], out_nc=opt_net['out_nc'],
75
- nf=opt_net['nf'], nb=opt_net['nb'], scale=opt['scale'], K=opt_net['flow']['K'], opt=opt, step=step)
76
-
77
- return netG
78
-
79
-
80
- #### Discriminator
81
- def define_D(opt):
82
- opt_net = opt['network_D']
83
- which_model = opt_net['which_model_D']
84
-
85
- if which_model == 'discriminator_vgg_128':
86
- hidden_units = opt_net.get('hidden_units', 8192)
87
- netD = SRGAN_arch.Discriminator_VGG_128(in_nc=opt_net['in_nc'], nf=opt_net['nf'], hidden_units=hidden_units)
88
- else:
89
- raise NotImplementedError('Discriminator model [{:s}] not recognized'.format(which_model))
90
- return netD
91
-
92
-
93
- #### Define Network used for Perceptual Loss
94
- def define_F(opt, use_bn=False):
95
- gpu_ids = opt.get('gpu_ids', None)
96
- device = torch.device('cuda' if gpu_ids else 'cpu')
97
- # PyTorch pretrained_models VGG19-54, before ReLU.
98
- if use_bn:
99
- feature_layer = 49
100
- else:
101
- feature_layer = 34
102
- netF = SRGAN_arch.VGGFeatureExtractor(feature_layer=feature_layer, use_bn=use_bn,
103
- use_input_norm=True, device=device)
104
- netF.eval() # No need to train
105
- return netF
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/options/__init__.py DELETED
File without changes
models/SRFlow/code/options/options.py DELETED
@@ -1,146 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- #
15
- # This file contains content licensed by https://github.com/xinntao/BasicSR/blob/master/LICENSE/LICENSE
16
-
17
- import os
18
- import os.path as osp
19
- import logging
20
- import yaml
21
- from utils.util import OrderedYaml
22
-
23
- Loader, Dumper = OrderedYaml()
24
-
25
-
26
- def parse(opt_path, is_train=True):
27
- with open(opt_path, mode='r') as f:
28
- opt = yaml.load(f, Loader=Loader)
29
- # export CUDA_VISIBLE_DEVICES
30
- gpu_list = ','.join(str(x) for x in opt.get('gpu_ids', []))
31
- # os.environ['CUDA_VISIBLE_DEVICES'] = gpu_list
32
- # print('export CUDA_VISIBLE_DEVICES=' + gpu_list)
33
- opt['is_train'] = is_train
34
- if opt['distortion'] == 'sr':
35
- scale = opt['scale']
36
-
37
- # datasets
38
- for phase, dataset in opt['datasets'].items():
39
- phase = phase.split('_')[0]
40
- dataset['phase'] = phase
41
- if opt['distortion'] == 'sr':
42
- dataset['scale'] = scale
43
- is_lmdb = False
44
- if dataset.get('dataroot_GT', None) is not None:
45
- dataset['dataroot_GT'] = osp.expanduser(dataset['dataroot_GT'])
46
- if dataset['dataroot_GT'].endswith('lmdb'):
47
- is_lmdb = True
48
- if dataset.get('dataroot_LQ', None) is not None:
49
- dataset['dataroot_LQ'] = osp.expanduser(dataset['dataroot_LQ'])
50
- if dataset['dataroot_LQ'].endswith('lmdb'):
51
- is_lmdb = True
52
- dataset['data_type'] = 'lmdb' if is_lmdb else 'img'
53
- if dataset['mode'].endswith('mc'): # for memcached
54
- dataset['data_type'] = 'mc'
55
- dataset['mode'] = dataset['mode'].replace('_mc', '')
56
-
57
- # path
58
- for key, path in opt['path'].items():
59
- if path and key in opt['path'] and key != 'strict_load':
60
- opt['path'][key] = osp.expanduser(path)
61
- opt['path']['root'] = '/kaggle/working/'
62
- if is_train:
63
- experiments_root = osp.join(opt['path']['root'], 'experiments', opt['name'])
64
- opt['path']['experiments_root'] = experiments_root
65
- opt['path']['models'] = osp.join(experiments_root, 'models')
66
- opt['path']['training_state'] = osp.join(experiments_root, 'training_state')
67
- opt['path']['log'] = experiments_root
68
- opt['path']['val_images'] = osp.join(experiments_root, 'val_images')
69
-
70
- # change some options for debug mode
71
- if 'debug' in opt['name']:
72
- opt['train']['val_freq'] = 8
73
- opt['logger']['print_freq'] = 1
74
- opt['logger']['save_checkpoint_freq'] = 8
75
- else: # test
76
- if not opt['path'].get('results_root', None):
77
- results_root = osp.join(opt['path']['root'], 'results', opt['name'])
78
- opt['path']['results_root'] = results_root
79
- opt['path']['log'] = opt['path']['results_root']
80
-
81
- # network
82
- if opt['distortion'] == 'sr':
83
- opt['network_G']['scale'] = scale
84
-
85
- # relative learning rate
86
- if 'train' in opt:
87
- niter = opt['train']['niter']
88
- if 'T_period_rel' in opt['train']:
89
- opt['train']['T_period'] = [int(x * niter) for x in opt['train']['T_period_rel']]
90
- if 'restarts_rel' in opt['train']:
91
- opt['train']['restarts'] = [int(x * niter) for x in opt['train']['restarts_rel']]
92
- if 'lr_steps_rel' in opt['train']:
93
- opt['train']['lr_steps'] = [int(x * niter) for x in opt['train']['lr_steps_rel']]
94
- if 'lr_steps_inverse_rel' in opt['train']:
95
- opt['train']['lr_steps_inverse'] = [int(x * niter) for x in opt['train']['lr_steps_inverse_rel']]
96
- print(opt['train'])
97
-
98
- return opt
99
-
100
-
101
- def dict2str(opt, indent_l=1):
102
- '''dict to string for logger'''
103
- msg = ''
104
- for k, v in opt.items():
105
- if isinstance(v, dict):
106
- msg += ' ' * (indent_l * 2) + k + ':[\n'
107
- msg += dict2str(v, indent_l + 1)
108
- msg += ' ' * (indent_l * 2) + ']\n'
109
- else:
110
- msg += ' ' * (indent_l * 2) + k + ': ' + str(v) + '\n'
111
- return msg
112
-
113
-
114
- class NoneDict(dict):
115
- def __missing__(self, key):
116
- return None
117
-
118
-
119
- # convert to NoneDict, which return None for missing key.
120
- def dict_to_nonedict(opt):
121
- if isinstance(opt, dict):
122
- new_opt = dict()
123
- for key, sub_opt in opt.items():
124
- new_opt[key] = dict_to_nonedict(sub_opt)
125
- return NoneDict(**new_opt)
126
- elif isinstance(opt, list):
127
- return [dict_to_nonedict(sub_opt) for sub_opt in opt]
128
- else:
129
- return opt
130
-
131
-
132
- def check_resume(opt, resume_iter):
133
- '''Check resume states and pretrain_model paths'''
134
- logger = logging.getLogger('base')
135
- if opt['path']['resume_state']:
136
- if opt['path'].get('pretrain_model_G', None) is not None or opt['path'].get(
137
- 'pretrain_model_D', None) is not None:
138
- logger.warning('pretrain_model path will be ignored when resuming training.')
139
-
140
- opt['path']['pretrain_model_G'] = osp.join(opt['path']['models'],
141
- '{}_G.pth'.format(resume_iter))
142
- logger.info('Set [pretrain_model_G] to ' + opt['path']['pretrain_model_G'])
143
- if 'gan' in opt['model']:
144
- opt['path']['pretrain_model_D'] = osp.join(opt['path']['models'],
145
- '{}_D.pth'.format(resume_iter))
146
- logger.info('Set [pretrain_model_D] to ' + opt['path']['pretrain_model_D'])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/prepare_data.py DELETED
@@ -1,118 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- import glob
16
- import os
17
- import sys
18
-
19
- import numpy as np
20
- import random
21
- import imageio
22
- import pickle
23
-
24
- from natsort import natsort
25
- from tqdm import tqdm
26
-
27
- def get_img_paths(dir_path, wildcard='*.png'):
28
- return natsort.natsorted(glob.glob(dir_path + '/' + wildcard))
29
-
30
- def create_all_dirs(path):
31
- if "." in path.split("/")[-1]:
32
- dirs = os.path.dirname(path)
33
- else:
34
- dirs = path
35
- os.makedirs(dirs, exist_ok=True)
36
-
37
- def to_pklv4(obj, path, vebose=False):
38
- create_all_dirs(path)
39
- with open(path, 'wb') as f:
40
- pickle.dump(obj, f, protocol=4)
41
- if vebose:
42
- print("Wrote {}".format(path))
43
-
44
-
45
- from imresize import imresize
46
-
47
- def random_crop(img, size):
48
- h, w, c = img.shape
49
-
50
- h_start = np.random.randint(0, h - size)
51
- h_end = h_start + size
52
-
53
- w_start = np.random.randint(0, w - size)
54
- w_end = w_start + size
55
-
56
- return img[h_start:h_end, w_start:w_end]
57
-
58
-
59
- def imread(img_path):
60
- img = imageio.imread(img_path)
61
- if len(img.shape) == 2:
62
- img = np.stack([img, ] * 3, axis=2)
63
- return img
64
-
65
-
66
- def to_pklv4_1pct(obj, path, vebose):
67
- n = int(round(len(obj) * 0.01))
68
- path = path.replace(".", "_1pct.")
69
- to_pklv4(obj[:n], path, vebose=True)
70
-
71
-
72
- def main(dir_path):
73
- hrs = []
74
- lqs = []
75
-
76
- img_paths = get_img_paths(dir_path)
77
- for img_path in tqdm(img_paths):
78
- img = imread(img_path)
79
-
80
- for i in range(47):
81
- crop = random_crop(img, 256)
82
- cropX4 = imresize(crop, scalar_scale=0.25)
83
- hrs.append(crop)
84
- lqs.append(cropX4)
85
-
86
- shuffle_combined(hrs, lqs)
87
-
88
- hrs_path = get_hrs_path(dir_path)
89
- to_pklv4(hrs, hrs_path, vebose=True)
90
-
91
- lqs_path = get_lqs_path(dir_path)
92
- to_pklv4(lqs, lqs_path, vebose=True)
93
-
94
-
95
- def get_hrs_path(dir_path):
96
- base_dir = '/kaggle/working/'
97
- name = os.path.basename(dir_path)
98
- hrs_path = os.path.join(base_dir, 'pkls', name + '.pklv4')
99
- return hrs_path
100
-
101
-
102
- def get_lqs_path(dir_path):
103
- base_dir = '/kaggle/working/'
104
- name = os.path.basename(dir_path)
105
- hrs_path = os.path.join(base_dir, 'pkls', name + '_X4.pklv4')
106
- return hrs_path
107
-
108
-
109
- def shuffle_combined(hrs, lqs):
110
- combined = list(zip(hrs, lqs))
111
- random.shuffle(combined)
112
- hrs[:], lqs[:] = zip(*combined)
113
-
114
-
115
- if __name__ == "__main__":
116
- dir_path = sys.argv[1]
117
- assert os.path.isdir(dir_path)
118
- main(dir_path)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/test.py DELETED
@@ -1,192 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- #
15
- # This file contains content licensed by https://github.com/xinntao/BasicSR/blob/master/LICENSE/LICENSE
16
-
17
-
18
- import glob
19
- import sys
20
- from collections import OrderedDict
21
-
22
- from natsort import natsort
23
-
24
- import options.options as option
25
- from Measure import Measure, psnr
26
- from imresize import imresize
27
- from models import create_model
28
- import torch
29
- from utils.util import opt_get
30
- import numpy as np
31
- import pandas as pd
32
- import os
33
- import cv2
34
-
35
-
36
- def fiFindByWildcard(wildcard):
37
- return natsort.natsorted(glob.glob(wildcard, recursive=True))
38
-
39
-
40
- def load_model(conf_path):
41
- opt = option.parse(conf_path, is_train=False)
42
- opt['gpu_ids'] = None
43
- opt = option.dict_to_nonedict(opt)
44
- model = create_model(opt)
45
-
46
- model_path = opt_get(opt, ['model_path'], None)
47
- model.load_network(load_path=model_path, network=model.netG)
48
- return model, opt
49
-
50
-
51
- def predict(model, lr):
52
- model.feed_data({"LQ": t(lr)}, need_GT=False)
53
- model.test()
54
- visuals = model.get_current_visuals(need_GT=False)
55
- return visuals.get('rlt', visuals.get("SR"))
56
-
57
-
58
- def t(array): return torch.Tensor(np.expand_dims(array.transpose([2, 0, 1]), axis=0).astype(np.float32)) / 255
59
-
60
-
61
- def rgb(t): return (
62
- np.clip((t[0] if len(t.shape) == 4 else t).detach().cpu().numpy().transpose([1, 2, 0]), 0, 1) * 255).astype(
63
- np.uint8)
64
-
65
-
66
- def imread(path):
67
- return cv2.imread(path)[:, :, [2, 1, 0]]
68
-
69
-
70
- def imwrite(path, img):
71
- os.makedirs(os.path.dirname(path), exist_ok=True)
72
- cv2.imwrite(path, img[:, :, [2, 1, 0]])
73
-
74
-
75
- def imCropCenter(img, size):
76
- h, w, c = img.shape
77
-
78
- h_start = max(h // 2 - size // 2, 0)
79
- h_end = min(h_start + size, h)
80
-
81
- w_start = max(w // 2 - size // 2, 0)
82
- w_end = min(w_start + size, w)
83
-
84
- return img[h_start:h_end, w_start:w_end]
85
-
86
-
87
- def impad(img, top=0, bottom=0, left=0, right=0, color=255):
88
- return np.pad(img, [(top, bottom), (left, right), (0, 0)], 'reflect')
89
-
90
-
91
- def main():
92
- conf_path = sys.argv[1]
93
- conf = conf_path.split('/')[-1].replace('.yml', '')
94
- model, opt = load_model(conf_path)
95
-
96
- data_dir = opt['dataroot']
97
-
98
- # this_dir = os.path.dirname(os.path.realpath(__file__))
99
- test_dir = os.path.join('/kaggle/working/', 'results', conf)
100
- print(f"Out dir: {test_dir}")
101
-
102
- measure = Measure(use_gpu=False)
103
-
104
- fname = f'measure_full.csv'
105
- fname_tmp = fname + "_"
106
- path_out_measures = os.path.join(test_dir, fname_tmp)
107
- path_out_measures_final = os.path.join(test_dir, fname)
108
-
109
- if os.path.isfile(path_out_measures_final):
110
- df = pd.read_csv(path_out_measures_final)
111
- elif os.path.isfile(path_out_measures):
112
- df = pd.read_csv(path_out_measures)
113
- else:
114
- df = None
115
-
116
- scale = opt['scale']
117
-
118
- pad_factor = 2
119
-
120
- data_sets = [
121
- 'Set5',
122
- 'Set14',
123
- 'Urban100',
124
- 'BSD100'
125
- ]
126
-
127
- final_df = pd.DataFrame()
128
-
129
- for data_set in data_sets:
130
- lr_paths = fiFindByWildcard(os.path.join(data_dir, data_set, '*LR.png'))
131
- hr_paths = fiFindByWildcard(os.path.join(data_dir, data_set, '*HR.png'))
132
-
133
- df = pd.DataFrame(columns=['conf', 'heat', 'data_set', 'name', 'PSNR', 'SSIM', 'LPIPS', 'LRC PSNR'])
134
-
135
- for lr_path, hr_path, idx_test in zip(lr_paths, hr_paths, range(len(lr_paths))):
136
- with torch.no_grad(), torch.cuda.amp.autocast():
137
- lr = imread(lr_path)
138
- hr = imread(hr_path)
139
-
140
- # Pad image to be % 2
141
- h, w, c = lr.shape
142
- lq_orig = lr.copy()
143
- lr = impad(lr, bottom=int(np.ceil(h / pad_factor) * pad_factor - h),
144
- right=int(np.ceil(w / pad_factor) * pad_factor - w))
145
-
146
- lr_t = t(lr)
147
-
148
- heat = opt['heat']
149
-
150
- if df is not None and len(df[(df['heat'] == heat) & (df['name'] == idx_test)]) == 1:
151
- continue
152
-
153
- sr_t = model.get_sr(lq=lr_t, heat=heat)
154
-
155
- sr = rgb(torch.clamp(sr_t, 0, 1))
156
- sr = sr[:h * scale, :w * scale]
157
-
158
- path_out_sr = os.path.join(test_dir, data_set, "{:0.2f}".format(heat).replace('.', ''), "{:06d}.png".format(idx_test))
159
- imwrite(path_out_sr, sr)
160
-
161
- meas = OrderedDict(conf=conf, heat=heat, data_set=data_set, name=idx_test)
162
- meas['PSNR'], meas['SSIM'], meas['LPIPS'] = measure.measure(sr, hr)
163
-
164
- lr_reconstruct_rgb = imresize(sr, 1 / opt['scale'])
165
- meas['LRC PSNR'] = psnr(lq_orig, lr_reconstruct_rgb)
166
-
167
- str_out = format_measurements(meas)
168
- print(str_out)
169
-
170
- df = df._append(pd.DataFrame([meas]), ignore_index=True)
171
-
172
- final_df = pd.concat([final_df, df])
173
-
174
- final_df.to_csv(path_out_measures, index=False)
175
- os.rename(path_out_measures, path_out_measures_final)
176
-
177
- # str_out = format_measurements(df.mean())
178
- # print(f"Results in: {path_out_measures_final}")
179
- # print('Mean: ' + str_out)
180
-
181
-
182
- def format_measurements(meas):
183
- s_out = []
184
- for k, v in meas.items():
185
- v = f"{v:0.2f}" if isinstance(v, float) else v
186
- s_out.append(f"{k}: {v}")
187
- str_out = ", ".join(s_out)
188
- return str_out
189
-
190
-
191
- if __name__ == "__main__":
192
- main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/train.py DELETED
@@ -1,328 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- #
15
- # This file contains content licensed by https://github.com/xinntao/BasicSR/blob/master/LICENSE/LICENSE
16
-
17
- import os
18
- from os.path import basename
19
- import math
20
- import argparse
21
- import random
22
- import logging
23
- import cv2
24
-
25
- import torch
26
- import torch.distributed as dist
27
- import torch.multiprocessing as mp
28
-
29
- import options.options as option
30
- from utils import util
31
- from data import create_dataloader, create_dataset
32
- from models import create_model
33
- from utils.timer import Timer, TickTock
34
- from utils.util import get_resume_paths
35
-
36
- import wandb
37
-
38
- def getEnv(name): import os; return True if name in os.environ.keys() else False
39
-
40
-
41
- def init_dist(backend='nccl', **kwargs):
42
- ''' initialization for distributed training'''
43
- # if mp.get_start_method(allow_none=True) is None:
44
- if mp.get_start_method(allow_none=True) != 'spawn':
45
- mp.set_start_method('spawn')
46
- rank = int(os.environ['RANK'])
47
- num_gpus = torch.cuda.device_count()
48
- torch.cuda.set_deviceDistIterSampler(rank % num_gpus)
49
- dist.init_process_group(backend=backend, **kwargs)
50
-
51
-
52
- def main():
53
- wandb.init(project='srflow')
54
- #### options
55
- parser = argparse.ArgumentParser()
56
- parser.add_argument('-opt', type=str, help='Path to option YMAL file.')
57
- parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none',
58
- help='job launcher')
59
- parser.add_argument('--local_rank', type=int, default=0)
60
- args = parser.parse_args()
61
- opt = option.parse(args.opt, is_train=True)
62
-
63
- #### distributed training settings
64
- opt['dist'] = False
65
- rank = -1
66
- print('Disabled distributed training.')
67
-
68
- #### loading resume state if exists
69
- if opt['path'].get('resume_state', None):
70
- resume_state_path, _ = get_resume_paths(opt)
71
-
72
- # distributed resuming: all load into default GPU
73
- if resume_state_path is None:
74
- resume_state = None
75
- else:
76
- device_id = torch.cuda.current_device()
77
- resume_state = torch.load(resume_state_path,
78
- map_location=lambda storage, loc: storage.cuda(device_id))
79
- option.check_resume(opt, resume_state['iter']) # check resume options
80
- else:
81
- resume_state = None
82
-
83
- #### mkdir and loggers
84
- if rank <= 0: # normal training (rank -1) OR distributed training (rank 0)
85
- if resume_state is None:
86
- util.mkdir_and_rename(
87
- opt['path']['experiments_root']) # rename experiment folder if exists
88
- util.mkdirs((path for key, path in opt['path'].items() if not key == 'experiments_root'
89
- and 'pretrain_model' not in key and 'resume' not in key))
90
-
91
- # config loggers. Before it, the log will not work
92
- util.setup_logger('base', opt['path']['log'], 'train_' + opt['name'], level=logging.INFO,
93
- screen=True, tofile=True)
94
- util.setup_logger('val', opt['path']['log'], 'val_' + opt['name'], level=logging.INFO,
95
- screen=True, tofile=True)
96
- logger = logging.getLogger('base')
97
- logger.info(option.dict2str(opt))
98
-
99
- # tensorboard logger
100
- if opt.get('use_tb_logger', False) and 'debug' not in opt['name']:
101
- version = float(torch.__version__[0:3])
102
- if version >= 1.1: # PyTorch 1.1
103
- from torch.utils.tensorboard import SummaryWriter
104
- else:
105
- logger.info(
106
- 'You are using PyTorch {}. Tensorboard will use [tensorboardX]'.format(version))
107
- from tensorboardX import SummaryWriter
108
- conf_name = basename(args.opt).replace(".yml", "")
109
- exp_dir = opt['path']['experiments_root']
110
- log_dir_train = os.path.join(exp_dir, 'tb', conf_name, 'train')
111
- log_dir_valid = os.path.join(exp_dir, 'tb', conf_name, 'valid')
112
- tb_logger_train = SummaryWriter(log_dir=log_dir_train)
113
- tb_logger_valid = SummaryWriter(log_dir=log_dir_valid)
114
- else:
115
- util.setup_logger('base', opt['path']['log'], 'train', level=logging.INFO, screen=True)
116
- logger = logging.getLogger('base')
117
-
118
- # convert to NoneDict, which returns None for missing keys
119
- opt = option.dict_to_nonedict(opt)
120
-
121
- #### random seed
122
- seed = opt['train']['manual_seed']
123
- if seed is None:
124
- seed = random.randint(1, 10000)
125
- if rank <= 0:
126
- logger.info('Random seed: {}'.format(seed))
127
- util.set_random_seed(seed)
128
-
129
- torch.backends.cudnn.benchmark = True
130
- # torch.backends.cudnn.deterministic = True
131
-
132
- #### create train and val dataloader
133
- dataset_ratio = 200 # enlarge the size of each epoch
134
- for phase, dataset_opt in opt['datasets'].items():
135
- if phase == 'train':
136
- full_dataset = create_dataset(dataset_opt)
137
- print('Dataset created')
138
- train_len = int(len(full_dataset) * 0.95)
139
- val_len = len(full_dataset) - train_len
140
- train_set, val_set = torch.utils.data.random_split(full_dataset, [train_len, val_len])
141
- train_size = int(math.ceil(train_len / dataset_opt['batch_size']))
142
- total_iters = int(opt['train']['niter'])
143
- total_epochs = int(math.ceil(total_iters / train_size))
144
- train_sampler = None
145
- train_loader = create_dataloader(train_set, dataset_opt, opt, train_sampler)
146
- if rank <= 0:
147
- logger.info('Number of train images: {:,d}, iters: {:,d}'.format(
148
- len(train_set), train_size))
149
- logger.info('Total epochs needed: {:d} for iters {:,d}'.format(
150
- total_epochs, total_iters))
151
- val_loader = torch.utils.data.DataLoader(val_set, batch_size=1, shuffle=False, num_workers=1,
152
- pin_memory=True)
153
- elif phase == 'val':
154
- continue
155
- else:
156
- raise NotImplementedError('Phase [{:s}] is not recognized.'.format(phase))
157
- assert train_loader is not None
158
-
159
- #### create model
160
- current_step = 0 if resume_state is None else resume_state['iter']
161
- model = create_model(opt, current_step)
162
-
163
- #### resume training
164
- if resume_state:
165
- logger.info('Resuming training from epoch: {}, iter: {}.'.format(
166
- resume_state['epoch'], resume_state['iter']))
167
-
168
- start_epoch = resume_state['epoch']
169
- current_step = resume_state['iter']
170
- model.resume_training(resume_state) # handle optimizers and schedulers
171
- else:
172
- current_step = 0
173
- start_epoch = 0
174
-
175
- #### training
176
- timer = Timer()
177
- logger.info('Start training from epoch: {:d}, iter: {:d}'.format(start_epoch, current_step))
178
- timerData = TickTock()
179
-
180
- for epoch in range(start_epoch, total_epochs + 1):
181
- if opt['dist']:
182
- train_sampler.set_epoch(epoch)
183
-
184
- timerData.tick()
185
- for _, train_data in enumerate(train_loader):
186
- timerData.tock()
187
- current_step += 1
188
- if current_step > total_iters:
189
- break
190
-
191
- #### training
192
- model.feed_data(train_data)
193
-
194
- #### update learning rate
195
- model.update_learning_rate(current_step, warmup_iter=opt['train']['warmup_iter'])
196
-
197
- try:
198
- nll = model.optimize_parameters(current_step)
199
- except RuntimeError as e:
200
- print("Skipping ERROR caught in nll = model.optimize_parameters(current_step): ")
201
- print(e)
202
-
203
- if nll is None:
204
- nll = 0
205
-
206
- wandb.log({"loss": nll})
207
- #### log
208
- def eta(t_iter):
209
- return (t_iter * (opt['train']['niter'] - current_step)) / 3600
210
-
211
- if current_step % opt['logger']['print_freq'] == 0 \
212
- or current_step - (resume_state['iter'] if resume_state else 0) < 25:
213
- avg_time = timer.get_average_and_reset()
214
- avg_data_time = timerData.get_average_and_reset()
215
- message = '<epoch:{:3d}, iter:{:8,d}, lr:{:.3e}, t:{:.2e}, td:{:.2e}, eta:{:.2e}, nll:{:.3e}> '.format(
216
- epoch, current_step, model.get_current_learning_rate(), avg_time, avg_data_time,
217
- eta(avg_time), nll)
218
- print(message)
219
- timer.tick()
220
- # Reduce number of logs
221
- if current_step % 5 == 0:
222
- tb_logger_train.add_scalar('loss/nll', nll, current_step)
223
- tb_logger_train.add_scalar('lr/base', model.get_current_learning_rate(), current_step)
224
- tb_logger_train.add_scalar('time/iteration', timer.get_last_iteration(), current_step)
225
- tb_logger_train.add_scalar('time/data', timerData.get_last_iteration(), current_step)
226
- tb_logger_train.add_scalar('time/eta', eta(timer.get_last_iteration()), current_step)
227
- for k, v in model.get_current_log().items():
228
- tb_logger_train.add_scalar(k, v, current_step)
229
-
230
- # validation
231
- if current_step % opt['train']['val_freq'] == 0 and rank <= 0:
232
- avg_psnr = 0.0
233
- idx = 0
234
- nlls = []
235
- for val_data in val_loader:
236
- idx += 1
237
- img_name = os.path.splitext(os.path.basename(val_data['LQ_path'][0]))[0]
238
- img_dir = os.path.join(opt['path']['val_images'], img_name)
239
- util.mkdir(img_dir)
240
-
241
- model.feed_data(val_data)
242
-
243
- nll = model.test()
244
- if nll is None:
245
- nll = 0
246
- nlls.append(nll)
247
-
248
- visuals = model.get_current_visuals()
249
-
250
- sr_img = None
251
- # Save SR images for reference
252
- if hasattr(model, 'heats'):
253
- for heat in model.heats:
254
- for i in range(model.n_sample):
255
- sr_img = util.tensor2img(visuals['SR', heat, i]) # uint8
256
- save_img_path = os.path.join(img_dir,
257
- '{:s}_{:09d}_h{:03d}_s{:d}.png'.format(img_name,
258
- current_step,
259
- int(heat * 100), i))
260
- util.save_img(sr_img, save_img_path)
261
- else:
262
- sr_img = util.tensor2img(visuals['SR']) # uint8
263
- save_img_path = os.path.join(img_dir,
264
- '{:s}_{:d}.png'.format(img_name, current_step))
265
- util.save_img(sr_img, save_img_path)
266
- assert sr_img is not None
267
-
268
- # Save LQ images for reference
269
- save_img_path_lq = os.path.join(img_dir,
270
- '{:s}_LQ.png'.format(img_name))
271
- if not os.path.isfile(save_img_path_lq):
272
- lq_img = util.tensor2img(visuals['LQ']) # uint8
273
- util.save_img(
274
- cv2.resize(lq_img, dsize=None, fx=opt['scale'], fy=opt['scale'],
275
- interpolation=cv2.INTER_NEAREST),
276
- save_img_path_lq)
277
-
278
- # Save GT images for reference
279
- gt_img = util.tensor2img(visuals['GT']) # uint8
280
- save_img_path_gt = os.path.join(img_dir,
281
- '{:s}_GT.png'.format(img_name))
282
- if not os.path.isfile(save_img_path_gt):
283
- util.save_img(gt_img, save_img_path_gt)
284
-
285
- # calculate PSNR
286
- crop_size = opt['scale']
287
- gt_img = gt_img / 255.
288
- sr_img = sr_img / 255.
289
- cropped_sr_img = sr_img[crop_size:-crop_size, crop_size:-crop_size, :]
290
- cropped_gt_img = gt_img[crop_size:-crop_size, crop_size:-crop_size, :]
291
- avg_psnr += util.calculate_psnr(cropped_sr_img * 255, cropped_gt_img * 255)
292
-
293
- avg_psnr = avg_psnr / idx
294
- avg_nll = sum(nlls) / len(nlls)
295
-
296
- # log
297
- logger.info('# Validation # PSNR: {:.4e}'.format(avg_psnr))
298
- logger_val = logging.getLogger('val') # validation logger
299
- logger_val.info('<epoch:{:3d}, iter:{:8,d}> psnr: {:.4e}'.format(
300
- epoch, current_step, avg_psnr))
301
-
302
- # tensorboard logger
303
- tb_logger_valid.add_scalar('loss/psnr', avg_psnr, current_step)
304
- tb_logger_valid.add_scalar('loss/nll', avg_nll, current_step)
305
-
306
- tb_logger_train.flush()
307
- tb_logger_valid.flush()
308
-
309
- #### save models and training states
310
- if current_step % opt['logger']['save_checkpoint_freq'] == 0:
311
- if rank <= 0:
312
- logger.info('Saving models and training states.')
313
- model.save(current_step)
314
- model.save_training_state(epoch, current_step)
315
-
316
- timerData.tick()
317
-
318
- with open(os.path.join(opt['path']['root'], "TRAIN_DONE"), 'w') as f:
319
- f.write("TRAIN_DONE")
320
-
321
- if rank <= 0:
322
- logger.info('Saving the final model.')
323
- model.save('latest')
324
- logger.info('End of training.')
325
-
326
-
327
- if __name__ == '__main__':
328
- main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/utils/__init__.py DELETED
File without changes
models/SRFlow/code/utils/timer.py DELETED
@@ -1,78 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- #
15
- # This file contains content licensed by https://github.com/xinntao/BasicSR/blob/master/LICENSE/LICENSE
16
-
17
- import time
18
-
19
-
20
- class ScopeTimer:
21
- def __init__(self, name):
22
- self.name = name
23
-
24
- def __enter__(self):
25
- self.start = time.time()
26
- return self
27
-
28
- def __exit__(self, *args):
29
- self.end = time.time()
30
- self.interval = self.end - self.start
31
- print("{} {:.3E}".format(self.name, self.interval))
32
-
33
-
34
- class Timer:
35
- def __init__(self):
36
- self.times = []
37
-
38
- def tick(self):
39
- self.times.append(time.time())
40
-
41
- def get_average_and_reset(self):
42
- if len(self.times) < 2:
43
- return -1
44
- avg = (self.times[-1] - self.times[0]) / (len(self.times) - 1)
45
- self.times = [self.times[-1]]
46
- return avg
47
-
48
- def get_last_iteration(self):
49
- if len(self.times) < 2:
50
- return 0
51
- return self.times[-1] - self.times[-2]
52
-
53
-
54
- class TickTock:
55
- def __init__(self):
56
- self.time_pairs = []
57
- self.current_time = None
58
-
59
- def tick(self):
60
- self.current_time = time.time()
61
-
62
- def tock(self):
63
- assert self.current_time is not None, self.current_time
64
- self.time_pairs.append([self.current_time, time.time()])
65
- self.current_time = None
66
-
67
- def get_average_and_reset(self):
68
- if len(self.time_pairs) == 0:
69
- return -1
70
- deltas = [t2 - t1 for t1, t2 in self.time_pairs]
71
- avg = sum(deltas) / len(deltas)
72
- self.time_pairs = []
73
- return avg
74
-
75
- def get_last_iteration(self):
76
- if len(self.time_pairs) == 0:
77
- return -1
78
- return self.time_pairs[-1][1] - self.time_pairs[-1][0]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/utils/util.py DELETED
@@ -1,174 +0,0 @@
1
- import glob
2
- import os
3
- import sys
4
- import time
5
- import math
6
- from datetime import datetime
7
- import random
8
- import logging
9
- from collections import OrderedDict
10
-
11
- import natsort
12
- import numpy as np
13
- import cv2
14
- import torch
15
- from torchvision.utils import make_grid
16
- from shutil import get_terminal_size
17
-
18
- import yaml
19
-
20
- try:
21
- from yaml import CLoader as Loader, CDumper as Dumper
22
- except ImportError:
23
- from yaml import Loader, Dumper
24
-
25
-
26
- def OrderedYaml():
27
- '''yaml orderedDict support'''
28
- _mapping_tag = yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG
29
-
30
- def dict_representer(dumper, data):
31
- return dumper.represent_dict(data.items())
32
-
33
- def dict_constructor(loader, node):
34
- return OrderedDict(loader.construct_pairs(node))
35
-
36
- Dumper.add_representer(OrderedDict, dict_representer)
37
- Loader.add_constructor(_mapping_tag, dict_constructor)
38
- return Loader, Dumper
39
-
40
-
41
- ####################
42
- # miscellaneous
43
- ####################
44
-
45
-
46
- def get_timestamp():
47
- return datetime.now().strftime('%y%m%d-%H%M%S')
48
-
49
-
50
- def mkdir(path):
51
- if not os.path.exists(path):
52
- os.makedirs(path)
53
-
54
-
55
- def mkdirs(paths):
56
- if isinstance(paths, str):
57
- mkdir(paths)
58
- else:
59
- for path in paths:
60
- mkdir(path)
61
-
62
-
63
- def mkdir_and_rename(path):
64
- if os.path.exists(path):
65
- new_name = path + '_archived_' + get_timestamp()
66
- print('Path already exists. Rename it to [{:s}]'.format(new_name))
67
- logger = logging.getLogger('base')
68
- logger.info('Path already exists. Rename it to [{:s}]'.format(new_name))
69
- os.rename(path, new_name)
70
- os.makedirs(path)
71
-
72
-
73
- def set_random_seed(seed):
74
- random.seed(seed)
75
- np.random.seed(seed)
76
- torch.manual_seed(seed)
77
- torch.cuda.manual_seed_all(seed)
78
-
79
-
80
- def setup_logger(logger_name, root, phase, level=logging.INFO, screen=False, tofile=False):
81
- '''set up logger'''
82
- lg = logging.getLogger(logger_name)
83
- formatter = logging.Formatter('%(asctime)s.%(msecs)03d - %(levelname)s: %(message)s',
84
- datefmt='%y-%m-%d %H:%M:%S')
85
- lg.setLevel(level)
86
- if tofile:
87
- log_file = os.path.join(root, phase + '_{}.log'.format(get_timestamp()))
88
- fh = logging.FileHandler(log_file, mode='w')
89
- fh.setFormatter(formatter)
90
- lg.addHandler(fh)
91
- if screen:
92
- sh = logging.StreamHandler()
93
- sh.setFormatter(formatter)
94
- lg.addHandler(sh)
95
-
96
-
97
- ####################
98
- # image convert
99
- ####################
100
-
101
-
102
- def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
103
- '''
104
- Converts a torch Tensor into an image Numpy array
105
- Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
106
- Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
107
- '''
108
- if hasattr(tensor, 'detach'):
109
- tensor = tensor.detach()
110
- tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # clamp
111
- tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) # to range [0,1]
112
- n_dim = tensor.dim()
113
- if n_dim == 4:
114
- n_img = len(tensor)
115
- img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy()
116
- img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
117
- elif n_dim == 3:
118
- img_np = tensor.numpy()
119
- img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
120
- elif n_dim == 2:
121
- img_np = tensor.numpy()
122
- else:
123
- raise TypeError(
124
- 'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
125
- if out_type == np.uint8:
126
- img_np = (img_np * 255.0).round()
127
- # Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
128
- return img_np.astype(out_type)
129
-
130
-
131
- def save_img(img, img_path, mode='RGB'):
132
- cv2.imwrite(img_path, img)
133
-
134
-
135
- ####################
136
- # metric
137
- ####################
138
-
139
-
140
- def calculate_psnr(img1, img2):
141
- # img1 and img2 have range [0, 255]
142
- img1 = img1.astype(np.float64)
143
- img2 = img2.astype(np.float64)
144
- mse = np.mean((img1 - img2) ** 2)
145
- if mse == 0:
146
- return float('inf')
147
- return 20 * math.log10(255.0 / math.sqrt(mse))
148
-
149
-
150
- def get_resume_paths(opt):
151
- resume_state_path = None
152
- resume_model_path = None
153
- ts = opt_get(opt, ['path', 'training_state'])
154
- if opt.get('path', {}).get('resume_state', None) == "auto" and ts is not None:
155
- wildcard = os.path.join(ts, "*")
156
- paths = natsort.natsorted(glob.glob(wildcard))
157
- if len(paths) > 0:
158
- resume_state_path = paths[-1]
159
- resume_model_path = resume_state_path.replace('training_state', 'models').replace('.state', '_G.pth')
160
- else:
161
- resume_state_path = opt.get('path', {}).get('resume_state')
162
- return resume_state_path, resume_model_path
163
-
164
-
165
- def opt_get(opt, keys, default=None):
166
- if opt is None:
167
- return default
168
- ret = opt
169
- for k in keys:
170
- ret = ret.get(k, None)
171
- if ret is None:
172
- return default
173
- return ret
174
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/srflow.py DELETED
@@ -1,27 +0,0 @@
1
- import numpy as np
2
- import torch
3
-
4
- from code.test import imread, impad, t, load_model, rgb
5
-
6
- def return_SRFlow_result(lr_path, conf_path='/models/SRFlow/code/confs/SRFlow_DF2K_4X.yml', heat=0.6):
7
- model, opt = load_model(conf_path)
8
- lr = imread(lr_path)
9
-
10
- scale = opt['scale']
11
- pad_factor = 2
12
-
13
- h, w, c = lr.shape
14
- lr = impad(lr, bottom=int(np.ceil(h / pad_factor) * pad_factor - h),
15
- right=int(np.ceil(w / pad_factor) * pad_factor - w))
16
-
17
- lr_t = t(lr)
18
- heat = opt[heat]
19
-
20
- sr_t = model.get_sr(lq=lr_t, heat=heat)
21
-
22
- sr = rgb(torch.clamp(sr_t, 0, 1))
23
- sr = sr[:h * scale, :w * scale]
24
-
25
- return sr
26
-
27
-