File size: 1,461 Bytes
28422eb
 
 
 
 
147ad2f
03bd9e8
 
 
 
 
 
387df4a
 
 
 
03bd9e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
615a1d7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import torch
if torch.cuda.is_available():
    torch.cuda.set_device(torch.device('cpu'))
else:
    torch.device('cpu')

import subprocess
import sys
import gradio as gr
from model import llm_chain_response, get_response_value
from process_documents import create_db_from_files

import subprocess

# Install unsloth
subprocess.run(["pip", "install", "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"])
 
llm_chain = llm_chain_response()

def chat_with_mistral(user_input):
    if not user_input:
      return "The message is not be empty."
    response = llm_chain.invoke({"query": user_input})
    print(response)

    print("---------------Response--------------")
    print(get_response_value(response["result"]))
    return get_response_value(response["result"])

def main():
    # Initialize the database
    create_db_from_files()

    # Set up and launch the Gradio interface
    iface = gr.Interface(
        fn=chat_with_mistral,
        inputs=gr.components.Textbox(label="Enter Your Message"),
        outputs=gr.components.Markdown(label="ChatbotResponse"),
        title="Resvu AI Chatbot",
        description="Interact with the Resvu API via this chatbot. Enter a message and get a response.",
        examples=["Hi, how are you", "Who are you?", "What services do you offer?", "How can I find out about upcoming community events?"],
        allow_flagging="never"
    )
    iface.launch()

if __name__ == "__main__":
    main()