Spaces:
Runtime error
Runtime error
File size: 10,248 Bytes
e11ba6d bbdc1ce e11ba6d bbdc1ce e11ba6d bbdc1ce e11ba6d bbdc1ce e11ba6d bbdc1ce e11ba6d bbdc1ce e11ba6d bbdc1ce e11ba6d bbdc1ce e11ba6d bbdc1ce e11ba6d bbdc1ce e11ba6d bbdc1ce e11ba6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import asyncio
import sys
import threading
import time
from ast import literal_eval
import autogen
import chromadb
import panel as pn
from autogen import Agent, AssistantAgent, UserProxyAgent
from autogen.agentchat.contrib.compressible_agent import CompressibleAgent
from autogen.agentchat.contrib.gpt_assistant_agent import GPTAssistantAgent
from autogen.agentchat.contrib.llava_agent import LLaVAAgent
from autogen.agentchat.contrib.math_user_proxy_agent import MathUserProxyAgent
from autogen.agentchat.contrib.retrieve_assistant_agent import RetrieveAssistantAgent
from autogen.agentchat.contrib.retrieve_user_proxy_agent import RetrieveUserProxyAgent
from autogen.agentchat.contrib.teachable_agent import TeachableAgent
from autogen.code_utils import extract_code
from configs import Q1, Q2, Q3, TIMEOUT, TITLE
from panel.widgets import TextAreaInput
try:
from termcolor import colored
except ImportError:
def colored(x, *args, **kwargs):
return x
def get_retrieve_config(docs_path, model_name, collection_name):
return {
"docs_path": literal_eval(docs_path),
"chunk_token_size": 1000,
"model": model_name,
"embedding_model": "all-mpnet-base-v2",
"get_or_create": True,
"client": chromadb.PersistentClient(path=".chromadb"),
"collection_name": collection_name,
}
# autogen.ChatCompletion.start_logging()
def termination_msg(x):
"""Check if a message is a termination message."""
_msg = str(x.get("content", "")).upper().strip().strip("\n").strip(".")
return isinstance(x, dict) and (_msg.endswith("TERMINATE") or _msg.startswith("TERMINATE"))
def _is_termination_msg(message):
"""Check if a message is a termination message.
Terminate when no code block is detected. Currently only detect python code blocks.
"""
if isinstance(message, dict):
message = message.get("content")
if message is None:
return False
cb = extract_code(message)
contain_code = False
for c in cb:
# todo: support more languages
if c[0] == "python":
contain_code = True
break
return not contain_code
def new_generate_oai_reply(
self,
messages=None,
sender=None,
config=None,
):
"""Generate a reply using autogen.oai."""
client = self.client if config is None else config
if client is None:
return False, None
if messages is None:
messages = self._oai_messages[sender]
# handle 336006 https://cloud.baidu.com/doc/WENXINWORKSHOP/s/tlmyncueh
_context = messages[-1].pop("context", None)
_messages = self._oai_system_message + messages
for idx, msg in enumerate(_messages):
if idx == 0:
continue
if idx % 2 == 1:
msg["role"] = "user" if msg.get("role") != "function" else "function"
else:
msg["role"] = "assistant"
if len(_messages) % 2 == 1:
_messages.append({"content": "Please reply exactly `TERMINATE` to me if the task is done.", "role": "user"})
# print(f"messages: {_messages}")
response = client.create(context=_context, messages=_messages)
# print(f"{response=}")
return True, client.extract_text_or_function_call(response)[0]
def initialize_agents(
llm_config, agent_name, system_msg, agent_type, retrieve_config=None, code_execution_config=False
):
if "RetrieveUserProxyAgent" == agent_type:
agent = RetrieveUserProxyAgent(
name=agent_name,
is_termination_msg=termination_msg,
human_input_mode="TERMINATE",
max_consecutive_auto_reply=5,
retrieve_config=retrieve_config,
code_execution_config=code_execution_config, # set to False if you don't want to execute the code
default_auto_reply="Please reply exactly `TERMINATE` to me if the task is done.",
)
elif "GPTAssistantAgent" == agent_type:
agent = GPTAssistantAgent(
name=agent_name,
instructions=system_msg,
llm_config=llm_config,
is_termination_msg=termination_msg,
)
elif "CompressibleAgent" == agent_type:
compress_config = {
"mode": "COMPRESS",
"trigger_count": 600, # set this to a large number for less frequent compression
"verbose": True, # to allow printing of compression information: contex before and after compression
"leave_last_n": 2,
}
agent = CompressibleAgent(
name=agent_name,
system_message=system_msg,
llm_config=llm_config,
compress_config=compress_config,
is_termination_msg=termination_msg,
)
elif "UserProxy" in agent_type:
agent = globals()[agent_type](
name=agent_name,
is_termination_msg=termination_msg,
human_input_mode="TERMINATE",
system_message=system_msg,
default_auto_reply="Please reply exactly `TERMINATE` to me if the task is done.",
max_consecutive_auto_reply=5,
code_execution_config=code_execution_config,
)
else:
agent = globals()[agent_type](
name=agent_name,
is_termination_msg=termination_msg,
human_input_mode="NEVER",
system_message=system_msg,
llm_config=llm_config,
)
# if any(["ernie" in cfg["model"].lower() for cfg in llm_config["config_list"]]):
if "ernie" in llm_config["config_list"][0]["model"].lower():
# Hack for ERNIE Bot models
# print("Hack for ERNIE Bot models.")
agent._reply_func_list.pop(-1)
agent.register_reply([Agent, None], new_generate_oai_reply, -1)
return agent
async def get_human_input(name, prompt: str, instance=None) -> str:
"""Get human input."""
if instance is None:
return input(prompt)
get_input_widget = TextAreaInput(placeholder=prompt, name="", sizing_mode="stretch_width")
get_input_checkbox = pn.widgets.Checkbox(name="Check to Submit Feedback")
instance.send(pn.Row(get_input_widget, get_input_checkbox), user=name, respond=False)
ts = time.time()
while True:
if time.time() - ts > TIMEOUT:
instance.send(
f"You didn't provide your feedback in {TIMEOUT} seconds, skip and use auto-reply.",
user=name,
respond=False,
)
reply = ""
break
if get_input_widget.value != "" and get_input_checkbox.value is True:
get_input_widget.disabled = True
reply = get_input_widget.value
break
await asyncio.sleep(0.1)
return reply
async def check_termination_and_human_reply(
self,
messages=None,
sender=None,
config=None,
instance=None,
):
"""Check if the conversation should be terminated, and if human reply is provided."""
if config is None:
config = self
if messages is None:
messages = self._oai_messages[sender]
message = messages[-1]
reply = ""
no_human_input_msg = ""
if self.human_input_mode == "ALWAYS":
reply = await get_human_input(
self.name,
f"Provide feedback to {sender.name}. Press enter to skip and use auto-reply, or type 'exit' to end the conversation: ",
instance,
)
no_human_input_msg = "NO HUMAN INPUT RECEIVED." if not reply else ""
# if the human input is empty, and the message is a termination message, then we will terminate the conversation
reply = reply if reply or not self._is_termination_msg(message) else "exit"
else:
if self._consecutive_auto_reply_counter[sender] >= self._max_consecutive_auto_reply_dict[sender]:
if self.human_input_mode == "NEVER":
reply = "exit"
else:
# self.human_input_mode == "TERMINATE":
terminate = self._is_termination_msg(message)
reply = await get_human_input(
self.name,
f"Please give feedback to {sender.name}. Press enter or type 'exit' to stop the conversation: "
if terminate
else f"Please give feedback to {sender.name}. Press enter to skip and use auto-reply, or type 'exit' to stop the conversation: ",
instance,
)
no_human_input_msg = "NO HUMAN INPUT RECEIVED." if not reply else ""
# if the human input is empty, and the message is a termination message, then we will terminate the conversation
reply = reply if reply or not terminate else "exit"
elif self._is_termination_msg(message):
if self.human_input_mode == "NEVER":
reply = "exit"
else:
# self.human_input_mode == "TERMINATE":
reply = await get_human_input(
self.name,
f"Please give feedback to {sender.name}. Press enter or type 'exit' to stop the conversation: ",
instance,
)
no_human_input_msg = "NO HUMAN INPUT RECEIVED." if not reply else ""
# if the human input is empty, and the message is a termination message, then we will terminate the conversation
reply = reply or "exit"
# print the no_human_input_msg
if no_human_input_msg:
print(colored(f"\n>>>>>>>> {no_human_input_msg}", "red"), flush=True)
# stop the conversation
if reply == "exit":
# reset the consecutive_auto_reply_counter
self._consecutive_auto_reply_counter[sender] = 0
return True, None
# send the human reply
if reply or self._max_consecutive_auto_reply_dict[sender] == 0:
# reset the consecutive_auto_reply_counter
self._consecutive_auto_reply_counter[sender] = 0
return True, reply
# increment the consecutive_auto_reply_counter
self._consecutive_auto_reply_counter[sender] += 1
if self.human_input_mode != "NEVER":
print(colored("\n>>>>>>>> USING AUTO REPLY...", "red"), flush=True)
return False, None
|