File size: 10,248 Bytes
e11ba6d
bbdc1ce
 
e11ba6d
bbdc1ce
 
 
 
e11ba6d
 
bbdc1ce
 
 
 
 
 
 
 
e11ba6d
 
 
 
 
 
 
 
 
bbdc1ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e11ba6d
 
 
bbdc1ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e11ba6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbdc1ce
 
 
 
 
 
 
e11ba6d
bbdc1ce
 
 
e11ba6d
bbdc1ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e11ba6d
bbdc1ce
e11ba6d
bbdc1ce
 
 
 
 
 
 
 
 
 
 
e11ba6d
 
 
 
 
 
bbdc1ce
 
e11ba6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import asyncio
import sys
import threading
import time
from ast import literal_eval

import autogen
import chromadb
import panel as pn
from autogen import Agent, AssistantAgent, UserProxyAgent
from autogen.agentchat.contrib.compressible_agent import CompressibleAgent
from autogen.agentchat.contrib.gpt_assistant_agent import GPTAssistantAgent
from autogen.agentchat.contrib.llava_agent import LLaVAAgent
from autogen.agentchat.contrib.math_user_proxy_agent import MathUserProxyAgent
from autogen.agentchat.contrib.retrieve_assistant_agent import RetrieveAssistantAgent
from autogen.agentchat.contrib.retrieve_user_proxy_agent import RetrieveUserProxyAgent
from autogen.agentchat.contrib.teachable_agent import TeachableAgent
from autogen.code_utils import extract_code
from configs import Q1, Q2, Q3, TIMEOUT, TITLE
from panel.widgets import TextAreaInput

try:
    from termcolor import colored
except ImportError:

    def colored(x, *args, **kwargs):
        return x


def get_retrieve_config(docs_path, model_name, collection_name):
    return {
        "docs_path": literal_eval(docs_path),
        "chunk_token_size": 1000,
        "model": model_name,
        "embedding_model": "all-mpnet-base-v2",
        "get_or_create": True,
        "client": chromadb.PersistentClient(path=".chromadb"),
        "collection_name": collection_name,
    }


# autogen.ChatCompletion.start_logging()
def termination_msg(x):
    """Check if a message is a termination message."""
    _msg = str(x.get("content", "")).upper().strip().strip("\n").strip(".")
    return isinstance(x, dict) and (_msg.endswith("TERMINATE") or _msg.startswith("TERMINATE"))


def _is_termination_msg(message):
    """Check if a message is a termination message.
    Terminate when no code block is detected. Currently only detect python code blocks.
    """
    if isinstance(message, dict):
        message = message.get("content")
        if message is None:
            return False
    cb = extract_code(message)
    contain_code = False
    for c in cb:
        # todo: support more languages
        if c[0] == "python":
            contain_code = True
            break
    return not contain_code


def new_generate_oai_reply(
    self,
    messages=None,
    sender=None,
    config=None,
):
    """Generate a reply using autogen.oai."""
    client = self.client if config is None else config
    if client is None:
        return False, None
    if messages is None:
        messages = self._oai_messages[sender]

    # handle 336006 https://cloud.baidu.com/doc/WENXINWORKSHOP/s/tlmyncueh
    _context = messages[-1].pop("context", None)
    _messages = self._oai_system_message + messages
    for idx, msg in enumerate(_messages):
        if idx == 0:
            continue
        if idx % 2 == 1:
            msg["role"] = "user" if msg.get("role") != "function" else "function"
        else:
            msg["role"] = "assistant"
    if len(_messages) % 2 == 1:
        _messages.append({"content": "Please reply exactly `TERMINATE` to me if the task is done.", "role": "user"})
    # print(f"messages: {_messages}")
    response = client.create(context=_context, messages=_messages)
    # print(f"{response=}")
    return True, client.extract_text_or_function_call(response)[0]


def initialize_agents(
    llm_config, agent_name, system_msg, agent_type, retrieve_config=None, code_execution_config=False
):
    if "RetrieveUserProxyAgent" == agent_type:
        agent = RetrieveUserProxyAgent(
            name=agent_name,
            is_termination_msg=termination_msg,
            human_input_mode="TERMINATE",
            max_consecutive_auto_reply=5,
            retrieve_config=retrieve_config,
            code_execution_config=code_execution_config,  # set to False if you don't want to execute the code
            default_auto_reply="Please reply exactly `TERMINATE` to me if the task is done.",
        )
    elif "GPTAssistantAgent" == agent_type:
        agent = GPTAssistantAgent(
            name=agent_name,
            instructions=system_msg,
            llm_config=llm_config,
            is_termination_msg=termination_msg,
        )
    elif "CompressibleAgent" == agent_type:
        compress_config = {
            "mode": "COMPRESS",
            "trigger_count": 600,  # set this to a large number for less frequent compression
            "verbose": True,  # to allow printing of compression information: contex before and after compression
            "leave_last_n": 2,
        }
        agent = CompressibleAgent(
            name=agent_name,
            system_message=system_msg,
            llm_config=llm_config,
            compress_config=compress_config,
            is_termination_msg=termination_msg,
        )
    elif "UserProxy" in agent_type:
        agent = globals()[agent_type](
            name=agent_name,
            is_termination_msg=termination_msg,
            human_input_mode="TERMINATE",
            system_message=system_msg,
            default_auto_reply="Please reply exactly `TERMINATE` to me if the task is done.",
            max_consecutive_auto_reply=5,
            code_execution_config=code_execution_config,
        )
    else:
        agent = globals()[agent_type](
            name=agent_name,
            is_termination_msg=termination_msg,
            human_input_mode="NEVER",
            system_message=system_msg,
            llm_config=llm_config,
        )
    # if any(["ernie" in cfg["model"].lower() for cfg in llm_config["config_list"]]):
    if "ernie" in llm_config["config_list"][0]["model"].lower():
        # Hack for ERNIE Bot models
        # print("Hack for ERNIE Bot models.")
        agent._reply_func_list.pop(-1)
        agent.register_reply([Agent, None], new_generate_oai_reply, -1)
    return agent


async def get_human_input(name, prompt: str, instance=None) -> str:
    """Get human input."""
    if instance is None:
        return input(prompt)
    get_input_widget = TextAreaInput(placeholder=prompt, name="", sizing_mode="stretch_width")
    get_input_checkbox = pn.widgets.Checkbox(name="Check to Submit Feedback")
    instance.send(pn.Row(get_input_widget, get_input_checkbox), user=name, respond=False)
    ts = time.time()
    while True:
        if time.time() - ts > TIMEOUT:
            instance.send(
                f"You didn't provide your feedback in {TIMEOUT} seconds, skip and use auto-reply.",
                user=name,
                respond=False,
            )
            reply = ""
            break
        if get_input_widget.value != "" and get_input_checkbox.value is True:
            get_input_widget.disabled = True
            reply = get_input_widget.value
            break
        await asyncio.sleep(0.1)
    return reply


async def check_termination_and_human_reply(
    self,
    messages=None,
    sender=None,
    config=None,
    instance=None,
):
    """Check if the conversation should be terminated, and if human reply is provided."""
    if config is None:
        config = self
    if messages is None:
        messages = self._oai_messages[sender]
    message = messages[-1]
    reply = ""
    no_human_input_msg = ""
    if self.human_input_mode == "ALWAYS":
        reply = await get_human_input(
            self.name,
            f"Provide feedback to {sender.name}. Press enter to skip and use auto-reply, or type 'exit' to end the conversation: ",
            instance,
        )
        no_human_input_msg = "NO HUMAN INPUT RECEIVED." if not reply else ""
        # if the human input is empty, and the message is a termination message, then we will terminate the conversation
        reply = reply if reply or not self._is_termination_msg(message) else "exit"
    else:
        if self._consecutive_auto_reply_counter[sender] >= self._max_consecutive_auto_reply_dict[sender]:
            if self.human_input_mode == "NEVER":
                reply = "exit"
            else:
                # self.human_input_mode == "TERMINATE":
                terminate = self._is_termination_msg(message)
                reply = await get_human_input(
                    self.name,
                    f"Please give feedback to {sender.name}. Press enter or type 'exit' to stop the conversation: "
                    if terminate
                    else f"Please give feedback to {sender.name}. Press enter to skip and use auto-reply, or type 'exit' to stop the conversation: ",
                    instance,
                )
                no_human_input_msg = "NO HUMAN INPUT RECEIVED." if not reply else ""
                # if the human input is empty, and the message is a termination message, then we will terminate the conversation
                reply = reply if reply or not terminate else "exit"
        elif self._is_termination_msg(message):
            if self.human_input_mode == "NEVER":
                reply = "exit"
            else:
                # self.human_input_mode == "TERMINATE":
                reply = await get_human_input(
                    self.name,
                    f"Please give feedback to {sender.name}. Press enter or type 'exit' to stop the conversation: ",
                    instance,
                )
                no_human_input_msg = "NO HUMAN INPUT RECEIVED." if not reply else ""
                # if the human input is empty, and the message is a termination message, then we will terminate the conversation
                reply = reply or "exit"

    # print the no_human_input_msg
    if no_human_input_msg:
        print(colored(f"\n>>>>>>>> {no_human_input_msg}", "red"), flush=True)

    # stop the conversation
    if reply == "exit":
        # reset the consecutive_auto_reply_counter
        self._consecutive_auto_reply_counter[sender] = 0
        return True, None

    # send the human reply
    if reply or self._max_consecutive_auto_reply_dict[sender] == 0:
        # reset the consecutive_auto_reply_counter
        self._consecutive_auto_reply_counter[sender] = 0
        return True, reply

    # increment the consecutive_auto_reply_counter
    self._consecutive_auto_reply_counter[sender] += 1
    if self.human_input_mode != "NEVER":
        print(colored("\n>>>>>>>> USING AUTO REPLY...", "red"), flush=True)

    return False, None