Thamizh / semanticsearch.py
thiyagab's picture
Updated to check for the index search
83c8bb0
raw
history blame
1.87 kB
import json
import numpy
import os
import re
# Opening JSON file
f = open('thirukural_git.json')
# returns JSON object as
# a dictionary
data = json.load(f)
en_translations=[]
kurals=[]
# Iterating through the json
# list
for kural in data['kurals']:
en_translations.append((kural['meaning']['en'].lower()))
kurals.append(kural['kural'])
# Closing file
f.close()
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('all-MiniLM-L6-v2')
sen_embeddings = model.encode(en_translations)
# sen_embeddings= numpy.memmap('trainedmodel',mode="r",dtype=numpy.float32,shape=(1330,768))
# sen_embeddings.tofile('trainedmodel')
def preprocess(input:str):
if input.startswith('/'):
#TODO
return True
values = [int(s) for s in re.findall(r'-?\d+\.?\d*', input)]
if values:
index=values[0]
return kural_definition(index)
else:
return False
def find_similarities(input:str):
if(not preprocess(input)):
input_embeddings = model.encode([input.lower()])
from sklearn.metrics.pairwise import cosine_similarity
#let's calculate cosine similarity for sentence 0:
similarity_matrix=cosine_similarity(
[input_embeddings[0]],
sen_embeddings[1:]
)
indices=[numpy.argpartition(similarity_matrix[0],-3)[-3:]]
indices.sort(reverse=True)
response=''
for index in indices[0]:
response+=kural_definition(index)
return response
def kural_definition(index:int):
response=''
print(en_translations[index + 1])
response += "\n".join(kurals[index + 1]) + "\n"
response += en_translations[index + 1] + "\n\n"
print("\n".join(kurals[index + 1]))
# while True:
# text=input('Ask valluvar: ')
# if( text == 'exit'):
# break
# find_similarities(text)