Thamizh / semanticsearch.py
thiyagab's picture
clean up
c6725ff
raw
history blame
2.01 kB
import json
import numpy
import os
import re
# Opening JSON file
f = open('thirukural_git.json')
# returns JSON object as
# a dictionary
data = json.load(f)
en_translations = []
kurals = []
# Iterating through the json
# list
for kural in data['kurals']:
en_translations.append((kural['meaning']['en'].lower()))
kurals.append(kural['kural'])
# Closing file
f.close()
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('all-MiniLM-L6-v2')
sen_embeddings = model.encode(en_translations)
# sen_embeddings= numpy.memmap('trainedmodel',mode="r",dtype=numpy.float32,shape=(1330,768))
# sen_embeddings.tofile('trainedmodel')
def preprocess(input: str):
if input.startswith('/'):
# TODO
return False
values = [int(s) for s in re.findall(r'-?\d+\.?\d*', input)]
if values:
index = values[0]
if index > 0:
return kural_definition(index - 1)
else:
return False
def find_similarities(input: str):
response = preprocess(input)
if response:
return response
input_embeddings = model.encode([input.lower()])
from sklearn.metrics.pairwise import cosine_similarity
# let's calculate cosine similarity for sentence 0:
similarity_matrix = cosine_similarity(
[input_embeddings[0]],
sen_embeddings[1:]
)
indices = [numpy.argpartition(similarity_matrix[0], -3)[-3:]]
indices=sorted(indices[0],key=lambda x:-similarity_matrix[0][x])
response = ''
for index in indices:
print(similarity_matrix[0][index])
response += kural_definition(index + 1)
return response
def kural_definition(index: int):
response = ''
print(en_translations[index])
response += "\n".join(kurals[index]) + "\n"
response += en_translations[index] + "\n\n"
print("\n".join(kurals[index]))
return response
# while True:
# text = input('Ask valluvar: ')
# if (text == 'exit'):
# break
# find_similarities(text)