rxagent / app.py
thlinhares's picture
initial commit
c74b8b6
raw
history blame
1.13 kB
import io
import requests
import torch
from PIL import Image
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
# step 1: Setup constant
device = "cuda"
dtype = torch.float16
# step 2: Load Processor and Model
processor = AutoProcessor.from_pretrained("StanfordAIMI/CheXagent-8b", trust_remote_code=True)
generation_config = GenerationConfig.from_pretrained("StanfordAIMI/CheXagent-8b")
model = AutoModelForCausalLM.from_pretrained("StanfordAIMI/CheXagent-8b", torch_dtype=dtype, trust_remote_code=True)
# step 3: Fetch the images
image_path = "https://upload.wikimedia.org/wikipedia/commons/3/3b/Pleural_effusion-Metastatic_breast_carcinoma_Case_166_%285477628658%29.jpg"
images = [Image.open(io.BytesIO(requests.get(image_path).content)).convert("RGB")]
# step 4: Generate the Findings section
prompt = f'Describe "Airway"'
inputs = processor(images=images, text=f" USER: <s>{prompt} ASSISTANT: <s>", return_tensors="pt").to(device=device, dtype=dtype)
output = model.generate(**inputs, generation_config=generation_config)[0]
response = processor.tokenizer.decode(output, skip_special_tokens=True)