rxagent / app.py
thlinhares's picture
teste
978e417
import io
import requests
import torch
from PIL import Image
from rich import print
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
def download_image(url):
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
}
resp = requests.get(url, headers=headers)
resp.raise_for_status()
return Image.open(io.BytesIO(resp.content)).convert("RGB")
def generate(images, prompt, processor, model, device, dtype, generation_config):
inputs = processor(
images=images[:2], text=f" USER: <s>{prompt} ASSISTANT: <s>", return_tensors="pt"
).to(device=device, dtype=dtype)
output = model.generate(**inputs, generation_config=generation_config)[0]
response = processor.tokenizer.decode(output, skip_special_tokens=True)
return response
def main():
# step 1: Setup constant
device = "cuda:0" if torch.cuda.is_available() else "cpu"
dtype = torch.float16
# step 2: Load Processor and Model
processor = AutoProcessor.from_pretrained("StanfordAIMI/CheXagent-8b", trust_remote_code=True)
generation_config = GenerationConfig.from_pretrained("StanfordAIMI/CheXagent-8b")
model = AutoModelForCausalLM.from_pretrained(
"StanfordAIMI/CheXagent-8b", torch_dtype=dtype, trust_remote_code=True
).to(device)
# step 3: Fetch the images
print(f"Download image...")
image_path = "https://upload.wikimedia.org/wikipedia/commons/3/3b/Pleural_effusion-Metastatic_breast_carcinoma_Case_166_%285477628658%29.jpg"
images = [download_image(image_path)]
# step 4: Generate the Findings section
print(f"Analise image...")
for anatomy in anatomies:
prompt = f'Describe "{anatomy}"'
response = generate(images, prompt, processor, model, device, dtype, generation_config)
print(f"Generating the Findings for [{anatomy}]:")
print(response)
print(f"FIM !!")
if __name__ == '__main__':
print(f"Start the Findings")
anatomies = [
"Airway"
]
main()