Spaces:
Runtime error
Runtime error
File size: 13,641 Bytes
07d03e7 c9ca579 07d03e7 52811e4 07d03e7 52811e4 07d03e7 383cfb9 07d03e7 383cfb9 07d03e7 383cfb9 07d03e7 383cfb9 07d03e7 383cfb9 07d03e7 383cfb9 07d03e7 383cfb9 07d03e7 52811e4 07d03e7 c9ca579 07d03e7 52811e4 07d03e7 52811e4 07d03e7 383cfb9 07d03e7 383cfb9 07d03e7 383cfb9 07d03e7 c9ca579 07d03e7 68bde08 07d03e7 c9ca579 07d03e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
import os
import subprocess
# Install flash attention
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
import copy
import spaces
import time
import torch
from threading import Thread
from typing import List, Dict, Union
import urllib
from PIL import Image
import io
import datasets
import gradio as gr
from transformers import AutoProcessor, TextIteratorStreamer
from transformers import Idefics2ForConditionalGeneration
import tempfile
from streaming_stt_nemo import Model
from huggingface_hub import InferenceClient
import edge_tts
import asyncio
theme = gr.themes.Base(
font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'],
)
default_lang = "en"
engines = { default_lang: Model(default_lang) }
def transcribe(audio):
lang = "en"
model = engines[lang]
text = model.stt_file(audio)[0]
return text
client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
system_instructions1 = "<s>[SYSTEM] Answer as Real Jarvis JARVIS, Made by 'Tony Stark', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses as if You are the character Jarvis, made by 'Tony Stark.' The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"
def model(text):
generate_kwargs = dict(
temperature=0.7,
max_new_tokens=512,
top_p=0.95,
repetition_penalty=1,
do_sample=True,
seed=42,
)
formatted_prompt = system_instructions1 + text + "[JARVIS]"
stream = client1.text_generation(
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
if not response.token.text == "</s>":
output += response.token.text
return output
async def respond(audio):
user = transcribe(audio)
reply = model(user)
communicate = edge_tts.Communicate(reply)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
yield tmp_path
DEVICE = torch.device("cuda")
MODELS = {
"idefics2-8b-chatty": Idefics2ForConditionalGeneration.from_pretrained(
"HuggingFaceM4/idefics2-8b-chatty",
torch_dtype=torch.bfloat16,
_attn_implementation="flash_attention_2",
).to(DEVICE),
}
PROCESSOR = AutoProcessor.from_pretrained(
"HuggingFaceM4/idefics2-8b",
)
SYSTEM_PROMPT = [
{
"role": "system",
"content": [
{
"type": "text",
"text": "The following is a conversation between Idefics2, a highly knowledgeable and intelligent visual AI assistant created by Hugging Face, referred to as Assistant, and a human user called User. In the following interactions, User and Assistant will converse in natural language, and Assistant will do its best to answer User’s questions. Assistant has the ability to perceive images and reason about them, but it cannot generate images. Assistant was built to be respectful, polite and inclusive. It knows a lot, and always tells the truth. When prompted with an image, it does not make up facts. If required you can also generate images, always generate image in this format ![](https://image.pollinations.ai/prompt/{description}?width={width}&height={height}&nologo=poll&nofeed=yes&seed={random}), where {description} is: {StyleofImage}%20{PromptifiedPrompt}%20{adjective}%20{charactersDetailed}%20{visualStyle}%20{genre}, where [random] is: Random 10-digit positive integer",
},
],
},
{
"role": "assistant",
"content": [
{
"type": "text",
"text": "Hello, I'm Idefics2, Huggingface's latest multimodal assistant. How can I help you?",
},
],
}
]
BOT_AVATAR = "OpenAI_logo.png"
# Chatbot utils
def turn_is_pure_media(turn):
return turn[1] is None
def load_image_from_url(url):
with urllib.request.urlopen(url) as response:
image_data = response.read()
image_stream = io.BytesIO(image_data)
image = Image.open(image_stream)
return image
def img_to_bytes(image_path):
image = Image.open(image_path).convert(mode='RGB')
buffer = io.BytesIO()
image.save(buffer, format="JPEG")
img_bytes = buffer.getvalue()
image.close()
return img_bytes
def format_user_prompt_with_im_history_and_system_conditioning(
user_prompt, chat_history
) -> List[Dict[str, Union[List, str]]]:
"""
Produces the resulting list that needs to go inside the processor.
It handles the potential image(s), the history and the system conditionning.
"""
resulting_messages = copy.deepcopy(SYSTEM_PROMPT)
resulting_images = []
for resulting_message in resulting_messages:
if resulting_message["role"] == "user":
for content in resulting_message["content"]:
if content["type"] == "image":
resulting_images.append(load_image_from_url(content["image"]))
# Format history
for turn in chat_history:
if not resulting_messages or (
resulting_messages and resulting_messages[-1]["role"] != "user"
):
resulting_messages.append(
{
"role": "user",
"content": [],
}
)
if turn_is_pure_media(turn):
media = turn[0][0]
resulting_messages[-1]["content"].append({"type": "image"})
resulting_images.append(Image.open(media))
else:
user_utterance, assistant_utterance = turn
resulting_messages[-1]["content"].append(
{"type": "text", "text": user_utterance.strip()}
)
resulting_messages.append(
{
"role": "assistant",
"content": [{"type": "text", "text": user_utterance.strip()}],
}
)
# Format current input
if not user_prompt["files"]:
resulting_messages.append(
{
"role": "user",
"content": [{"type": "text", "text": user_prompt["text"]}],
}
)
else:
# Choosing to put the image first (i.e. before the text), but this is an arbiratrary choice.
resulting_messages.append(
{
"role": "user",
"content": [{"type": "image"}] * len(user_prompt["files"])
+ [{"type": "text", "text": user_prompt["text"]}],
}
)
resulting_images.extend([Image.open(path) for path in user_prompt["files"]])
return resulting_messages, resulting_images
def extract_images_from_msg_list(msg_list):
all_images = []
for msg in msg_list:
for c_ in msg["content"]:
if isinstance(c_, Image.Image):
all_images.append(c_)
return all_images
@spaces.GPU(duration=60)
def model_inference(
user_prompt,
chat_history,
model_selector,
decoding_strategy,
temperature,
max_new_tokens,
repetition_penalty,
top_p,
):
if user_prompt["text"].strip() == "" and not user_prompt["files"]:
gr.Error("Please input a query and optionally image(s).")
if user_prompt["text"].strip() == "" and user_prompt["files"]:
gr.Error("Please input a text query along the image(s).")
streamer = TextIteratorStreamer(
PROCESSOR.tokenizer,
skip_prompt=True,
timeout=120.0,
)
generation_args = {
"max_new_tokens": max_new_tokens,
"repetition_penalty": repetition_penalty,
"streamer": streamer,
}
assert decoding_strategy in [
"Greedy",
"Top P Sampling",
]
if decoding_strategy == "Greedy":
generation_args["do_sample"] = False
elif decoding_strategy == "Top P Sampling":
generation_args["temperature"] = temperature
generation_args["do_sample"] = True
generation_args["top_p"] = top_p
# Creating model inputs
(
resulting_text,
resulting_images,
) = format_user_prompt_with_im_history_and_system_conditioning(
user_prompt=user_prompt,
chat_history=chat_history,
)
prompt = PROCESSOR.apply_chat_template(resulting_text, add_generation_prompt=True)
inputs = PROCESSOR(
text=prompt,
images=resulting_images if resulting_images else None,
return_tensors="pt",
)
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
generation_args.update(inputs)
thread = Thread(
target=MODELS[model_selector].generate,
kwargs=generation_args,
)
thread.start()
print("Start generating")
acc_text = ""
for text_token in streamer:
time.sleep(0.01)
acc_text += text_token
if acc_text.endswith("<end_of_utterance>"):
acc_text = acc_text[:-18]
yield acc_text
print("Success - generated the following text:", acc_text)
print("-----")
FEATURES = datasets.Features(
{
"model_selector": datasets.Value("string"),
"images": datasets.Sequence(datasets.Image(decode=True)),
"conversation": datasets.Sequence({"User": datasets.Value("string"), "Assistant": datasets.Value("string")}),
"decoding_strategy": datasets.Value("string"),
"temperature": datasets.Value("float32"),
"max_new_tokens": datasets.Value("int32"),
"repetition_penalty": datasets.Value("float32"),
"top_p": datasets.Value("int32"),
}
)
# Hyper-parameters for generation
max_new_tokens = gr.Slider(
minimum=512,
maximum=4096,
value=1024,
step=1,
interactive=True,
label="Maximum number of new tokens to generate",
)
repetition_penalty = gr.Slider(
minimum=0.01,
maximum=5.0,
value=1.1,
step=0.01,
interactive=True,
label="Repetition penalty",
info="1.0 is equivalent to no penalty",
)
decoding_strategy = gr.Radio(
[
"Greedy",
"Top P Sampling",
],
value="Greedy",
label="Decoding strategy",
interactive=True,
info="Higher values is equivalent to sampling more low-probability tokens.",
)
temperature = gr.Slider(
minimum=0.0,
maximum=5.0,
value=0.4,
step=0.1,
visible=False,
interactive=True,
label="Sampling temperature",
info="Higher values will produce more diverse outputs.",
)
top_p = gr.Slider(
minimum=0.01,
maximum=0.99,
value=0.8,
step=0.01,
visible=False,
interactive=True,
label="Top P",
info="Higher values is equivalent to sampling more low-probability tokens.",
)
chatbot = gr.Chatbot(
label="Idefics2-Chatty",
avatar_images=[None, BOT_AVATAR],
height=450,
show_copy_button=True,
likeable=True,
layout="panel"
)
output=gr.Textbox(label="Prompt")
with gr.Blocks(
fill_height=True,
css=""".gradio-container .avatar-container {height: 40px width: 40px !important;} #duplicate-button {margin: auto; color: white; background: #f1a139; border-radius: 100vh; margin-top: 2px; margin-bottom: 2px;}""",
) as img:
gr.Markdown("# Image Chat, Image Generation, Image classification and Normal Chat")
with gr.Row(elem_id="model_selector_row"):
model_selector = gr.Dropdown(
choices=MODELS.keys(),
value=list(MODELS.keys())[0],
interactive=True,
show_label=False,
container=False,
label="Model",
visible=False,
)
decoding_strategy.change(
fn=lambda selection: gr.Slider(
visible=(
selection
in [
"contrastive_sampling",
"beam_sampling",
"Top P Sampling",
"sampling_top_k",
]
)
),
inputs=decoding_strategy,
outputs=temperature,
)
decoding_strategy.change(
fn=lambda selection: gr.Slider(visible=(selection in ["Top P Sampling"])),
inputs=decoding_strategy,
outputs=top_p,
)
gr.ChatInterface(
fn=model_inference,
chatbot=chatbot,
multimodal=True,
cache_examples=False,
additional_inputs=[
model_selector,
decoding_strategy,
temperature,
max_new_tokens,
repetition_penalty,
top_p,
],
)
with gr.Blocks() as voice:
with gr.Row():
input = gr.Audio(label="Voice Chat", sources="microphone", type="filepath", waveform_options=False)
output = gr.Audio(label="AI", type="filepath",
interactive=False,
autoplay=True,
elem_classes="audio")
gr.Interface(
fn=respond,
inputs=[input],
outputs=[output], live=True)
with gr.Blocks(theme=theme, css="footer {visibility: hidden}textbox{resize:none}", title="GPT 4o DEMO") as demo:
gr.TabbedInterface([voice, img], ['🗣️ Voice Chat', '💬 SuperChat'])
demo.launch()
|