Spaces:
Running
on
Zero
Running
on
Zero
thomasgauthier
commited on
Commit
·
fc91aa0
1
Parent(s):
bdf9962
ZeroGPU fixes
Browse files- app.py +6 -6
- gradio_interface.py +3 -2
- image_generator.py +10 -3
- model_loader.py +2 -0
app.py
CHANGED
@@ -1,16 +1,16 @@
|
|
1 |
-
import torch
|
2 |
import spaces
|
|
|
3 |
from model_loader import load_model_and_processor
|
4 |
from image_generator import process_and_generate
|
5 |
from gradio_interface import create_gradio_interface
|
6 |
|
7 |
if __name__ == "__main__":
|
8 |
-
|
9 |
-
|
|
|
|
|
10 |
|
11 |
-
# Load the model and processor
|
12 |
-
vl_gpt, vl_chat_processor = load_model_and_processor(model_path)
|
13 |
|
14 |
# Create and launch the Gradio interface
|
15 |
-
demo = create_gradio_interface(
|
16 |
demo.launch(allowed_paths=["/"])
|
|
|
|
|
1 |
import spaces
|
2 |
+
import torch
|
3 |
from model_loader import load_model_and_processor
|
4 |
from image_generator import process_and_generate
|
5 |
from gradio_interface import create_gradio_interface
|
6 |
|
7 |
if __name__ == "__main__":
|
8 |
+
import subprocess
|
9 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
10 |
+
|
11 |
+
|
12 |
|
|
|
|
|
13 |
|
14 |
# Create and launch the Gradio interface
|
15 |
+
demo = create_gradio_interface(process_and_generate)
|
16 |
demo.launch(allowed_paths=["/"])
|
gradio_interface.py
CHANGED
@@ -1,9 +1,10 @@
|
|
1 |
import gradio as gr
|
2 |
from PIL import Image
|
3 |
|
4 |
-
|
|
|
5 |
def gradio_process_and_generate(input_image, prompt, num_images, cfg_weight):
|
6 |
-
return process_and_generate(
|
7 |
|
8 |
explanation = """Janus 1.3B uses a differerent visual encoder for understanding and generation.
|
9 |
|
|
|
1 |
import gradio as gr
|
2 |
from PIL import Image
|
3 |
|
4 |
+
|
5 |
+
def create_gradio_interface(process_and_generate):
|
6 |
def gradio_process_and_generate(input_image, prompt, num_images, cfg_weight):
|
7 |
+
return process_and_generate(input_image, prompt, num_images, cfg_weight)
|
8 |
|
9 |
explanation = """Janus 1.3B uses a differerent visual encoder for understanding and generation.
|
10 |
|
image_generator.py
CHANGED
@@ -3,9 +3,10 @@ import PIL.Image
|
|
3 |
import torch
|
4 |
import numpy as np
|
5 |
from janus.utils.io import load_pil_images
|
|
|
6 |
from janus.models import MultiModalityCausalLM, VLChatProcessor
|
7 |
from functools import lru_cache
|
8 |
-
|
9 |
|
10 |
def prepare_classifier_free_guidance_input(input_embeds, vl_chat_processor, mmgpt, batch_size=16):
|
11 |
uncond_input_ids = torch.full((1, input_embeds.shape[1]),
|
@@ -26,7 +27,6 @@ def prepare_classifier_free_guidance_input(input_embeds, vl_chat_processor, mmgp
|
|
26 |
|
27 |
return combined_input_embeds
|
28 |
|
29 |
-
@spaces.GPU
|
30 |
@torch.inference_mode()
|
31 |
def generate(
|
32 |
mmgpt: MultiModalityCausalLM,
|
@@ -83,7 +83,14 @@ def get_start_tag_embed(vl_gpt, vl_chat_processor):
|
|
83 |
vl_chat_processor.tokenizer.encode(vl_chat_processor.image_start_tag, add_special_tokens=False, return_tensors="pt").to(vl_gpt.device)
|
84 |
)
|
85 |
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
start_tag_embed = get_start_tag_embed(vl_gpt, vl_chat_processor)
|
88 |
|
89 |
nl = '\n'
|
|
|
3 |
import torch
|
4 |
import numpy as np
|
5 |
from janus.utils.io import load_pil_images
|
6 |
+
from model_loader import load_model_and_processor
|
7 |
from janus.models import MultiModalityCausalLM, VLChatProcessor
|
8 |
from functools import lru_cache
|
9 |
+
import spaces
|
10 |
|
11 |
def prepare_classifier_free_guidance_input(input_embeds, vl_chat_processor, mmgpt, batch_size=16):
|
12 |
uncond_input_ids = torch.full((1, input_embeds.shape[1]),
|
|
|
27 |
|
28 |
return combined_input_embeds
|
29 |
|
|
|
30 |
@torch.inference_mode()
|
31 |
def generate(
|
32 |
mmgpt: MultiModalityCausalLM,
|
|
|
83 |
vl_chat_processor.tokenizer.encode(vl_chat_processor.image_start_tag, add_special_tokens=False, return_tensors="pt").to(vl_gpt.device)
|
84 |
)
|
85 |
|
86 |
+
@spaces.GPU
|
87 |
+
def process_and_generate(input_image, prompt, num_images=4, cfg_weight=5):
|
88 |
+
# Set the model path
|
89 |
+
model_path = "deepseek-ai/Janus-1.3B"
|
90 |
+
|
91 |
+
# Load the model and processor
|
92 |
+
vl_gpt, vl_chat_processor = load_model_and_processor(model_path)
|
93 |
+
|
94 |
start_tag_embed = get_start_tag_embed(vl_gpt, vl_chat_processor)
|
95 |
|
96 |
nl = '\n'
|
model_loader.py
CHANGED
@@ -1,7 +1,9 @@
|
|
1 |
import torch
|
2 |
from transformers import AutoModelForCausalLM
|
3 |
from janus.models import MultiModalityCausalLM, VLChatProcessor
|
|
|
4 |
|
|
|
5 |
def load_model_and_processor(model_path):
|
6 |
vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path)
|
7 |
tokenizer = vl_chat_processor.tokenizer
|
|
|
1 |
import torch
|
2 |
from transformers import AutoModelForCausalLM
|
3 |
from janus.models import MultiModalityCausalLM, VLChatProcessor
|
4 |
+
import spaces
|
5 |
|
6 |
+
@spaces.GPU
|
7 |
def load_model_and_processor(model_path):
|
8 |
vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path)
|
9 |
tokenizer = vl_chat_processor.tokenizer
|