Spaces:
Running
Running
thomasht86
commited on
Commit
•
6799751
1
Parent(s):
c73f361
first
Browse files- README.md +2 -2
- app.py +20 -73
- dataset.py +0 -19
- index.html +0 -0
- index.js +0 -126
- inference.py +0 -11
- style.css +0 -79
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title: Python
|
3 |
emoji: 🐍
|
4 |
colorFrom: blue
|
5 |
colorTo: yellow
|
@@ -7,7 +7,7 @@ sdk: gradio
|
|
7 |
sdk_version: 4.36.0
|
8 |
python_version: 3.10.4
|
9 |
app_file: app.py
|
10 |
-
models: [
|
11 |
datasets: [emotion]
|
12 |
license: mit
|
13 |
pinned: false
|
|
|
1 |
---
|
2 |
+
title: Python FastHTML
|
3 |
emoji: 🐍
|
4 |
colorFrom: blue
|
5 |
colorTo: yellow
|
|
|
7 |
sdk_version: 4.36.0
|
8 |
python_version: 3.10.4
|
9 |
app_file: app.py
|
10 |
+
models: [t5-small]
|
11 |
datasets: [emotion]
|
12 |
license: mit
|
13 |
pinned: false
|
app.py
CHANGED
@@ -1,79 +1,26 @@
|
|
1 |
-
import
|
2 |
-
import json
|
3 |
-
import requests
|
4 |
-
from http.server import SimpleHTTPRequestHandler, ThreadingHTTPServer
|
5 |
-
from urllib.parse import parse_qs, urlparse
|
6 |
|
7 |
-
|
8 |
-
|
9 |
|
10 |
-
|
11 |
-
# https://huggingface.co/spaces/{username}/{space}/settings
|
12 |
-
API_TOKEN = os.getenv("BIG_GAN_TOKEN")
|
13 |
|
|
|
|
|
|
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
url = urlparse(self.path)
|
24 |
-
query = parse_qs(url.query)
|
25 |
-
input = query.get("input", None)[0]
|
26 |
-
|
27 |
-
output = requests.request(
|
28 |
-
"POST",
|
29 |
-
"https://api-inference.huggingface.co/models/osanseviero/BigGAN-deep-128",
|
30 |
-
headers={"Authorization": f"Bearer {API_TOKEN}"},
|
31 |
-
data=json.dumps(input),
|
32 |
-
)
|
33 |
-
|
34 |
-
self.send_response(200)
|
35 |
-
self.send_header("Content-Type", "application/json")
|
36 |
-
self.end_headers()
|
37 |
-
|
38 |
-
self.wfile.write(output.content)
|
39 |
-
|
40 |
-
return SimpleHTTPRequestHandler
|
41 |
-
|
42 |
-
elif self.path.startswith("/infer_t5"):
|
43 |
-
url = urlparse(self.path)
|
44 |
-
query = parse_qs(url.query)
|
45 |
-
input = query.get("input", None)[0]
|
46 |
-
|
47 |
-
output = infer_t5(input)
|
48 |
-
|
49 |
-
self.send_response(200)
|
50 |
-
self.send_header("Content-Type", "application/json")
|
51 |
-
self.end_headers()
|
52 |
-
|
53 |
-
self.wfile.write(json.dumps({"output": output}).encode("utf-8"))
|
54 |
-
|
55 |
-
return SimpleHTTPRequestHandler
|
56 |
-
|
57 |
-
elif self.path.startswith("/query_emotion"):
|
58 |
-
url = urlparse(self.path)
|
59 |
-
query = parse_qs(url.query)
|
60 |
-
start = int(query.get("start", None)[0])
|
61 |
-
end = int(query.get("end", None)[0])
|
62 |
-
|
63 |
-
output = query_emotion(start, end)
|
64 |
-
|
65 |
-
self.send_response(200)
|
66 |
-
self.send_header("Content-Type", "application/json")
|
67 |
-
self.end_headers()
|
68 |
-
|
69 |
-
self.wfile.write(json.dumps({"output": output}).encode("utf-8"))
|
70 |
-
|
71 |
-
return SimpleHTTPRequestHandler
|
72 |
-
|
73 |
-
else:
|
74 |
-
return SimpleHTTPRequestHandler.do_GET(self)
|
75 |
-
|
76 |
-
|
77 |
-
server = ThreadingHTTPServer(("", 7860), RequestHandler)
|
78 |
-
|
79 |
-
server.serve_forever()
|
|
|
1 |
+
from fasthtml.common import *
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
# Add the HighlightJS built-in header
|
4 |
+
hdrs = (HighlightJS(langs=['python', 'javascript', 'html', 'css']),)
|
5 |
|
6 |
+
app, rt = fast_app(hdrs=hdrs)
|
|
|
|
|
7 |
|
8 |
+
code_example = """
|
9 |
+
import datetime
|
10 |
+
import time
|
11 |
|
12 |
+
for i in range(10):
|
13 |
+
print(f"{datetime.datetime.now()}")
|
14 |
+
time.sleep(1)
|
15 |
+
"""
|
16 |
|
17 |
+
@rt('/')
|
18 |
+
def get(req):
|
19 |
+
return Titled("Markdown rendering example",
|
20 |
+
Div(
|
21 |
+
# The code example needs to be surrounded by
|
22 |
+
# Pre & Code elements
|
23 |
+
Pre(Code(code_example))
|
24 |
+
))
|
25 |
|
26 |
+
serve(port=7680)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dataset.py
DELETED
@@ -1,19 +0,0 @@
|
|
1 |
-
from datasets import load_dataset
|
2 |
-
|
3 |
-
dataset = load_dataset("go_emotions", split="train")
|
4 |
-
|
5 |
-
emotions = dataset.info.features['labels'].feature.names
|
6 |
-
|
7 |
-
def query_emotion(start, end):
|
8 |
-
rows = dataset[start:end]
|
9 |
-
texts, labels = [rows[k] for k in rows.keys()]
|
10 |
-
|
11 |
-
observations = []
|
12 |
-
|
13 |
-
for i, text in enumerate(texts):
|
14 |
-
observations.append({
|
15 |
-
"text": text,
|
16 |
-
"emotion": emotions[labels[i]],
|
17 |
-
})
|
18 |
-
|
19 |
-
return observations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
index.html
DELETED
The diff for this file is too large to render.
See raw diff
|
|
index.js
DELETED
@@ -1,126 +0,0 @@
|
|
1 |
-
if (document.location.search.includes('dark-theme=true')) {
|
2 |
-
document.body.classList.add('dark-theme');
|
3 |
-
}
|
4 |
-
|
5 |
-
let cursor = 0;
|
6 |
-
const RANGE = 5;
|
7 |
-
const LIMIT = 16_000;
|
8 |
-
|
9 |
-
const textToImage = async (text) => {
|
10 |
-
const inferenceResponse = await fetch(`infer_biggan?input=${text}`);
|
11 |
-
const inferenceBlob = await inferenceResponse.blob();
|
12 |
-
|
13 |
-
return URL.createObjectURL(inferenceBlob);
|
14 |
-
};
|
15 |
-
|
16 |
-
const translateText = async (text) => {
|
17 |
-
const inferResponse = await fetch(`infer_t5?input=${text}`);
|
18 |
-
const inferJson = await inferResponse.json();
|
19 |
-
|
20 |
-
return inferJson.output;
|
21 |
-
};
|
22 |
-
|
23 |
-
const queryDataset = async (start, end) => {
|
24 |
-
const queryResponse = await fetch(`query_emotion?start=${start}&end=${end}`);
|
25 |
-
const queryJson = await queryResponse.json();
|
26 |
-
|
27 |
-
return queryJson.output;
|
28 |
-
};
|
29 |
-
|
30 |
-
const updateTable = async (cursor, range = RANGE) => {
|
31 |
-
const table = document.querySelector('.dataset-output');
|
32 |
-
|
33 |
-
const fragment = new DocumentFragment();
|
34 |
-
|
35 |
-
const observations = await queryDataset(cursor, cursor + range);
|
36 |
-
|
37 |
-
for (const observation of observations) {
|
38 |
-
let row = document.createElement('tr');
|
39 |
-
let text = document.createElement('td');
|
40 |
-
let emotion = document.createElement('td');
|
41 |
-
|
42 |
-
text.textContent = observation.text;
|
43 |
-
emotion.textContent = observation.emotion;
|
44 |
-
|
45 |
-
row.appendChild(text);
|
46 |
-
row.appendChild(emotion);
|
47 |
-
fragment.appendChild(row);
|
48 |
-
}
|
49 |
-
|
50 |
-
table.innerHTML = '';
|
51 |
-
|
52 |
-
table.appendChild(fragment);
|
53 |
-
|
54 |
-
table.insertAdjacentHTML(
|
55 |
-
'afterbegin',
|
56 |
-
`<thead>
|
57 |
-
<tr>
|
58 |
-
<td>text</td>
|
59 |
-
<td>emotion</td>
|
60 |
-
</tr>
|
61 |
-
</thead>`
|
62 |
-
);
|
63 |
-
};
|
64 |
-
|
65 |
-
const imageGenSelect = document.getElementById('image-gen-input');
|
66 |
-
const imageGenImage = document.querySelector('.image-gen-output');
|
67 |
-
const textGenForm = document.querySelector('.text-gen-form');
|
68 |
-
const tableButtonPrev = document.querySelector('.table-previous');
|
69 |
-
const tableButtonNext = document.querySelector('.table-next');
|
70 |
-
|
71 |
-
imageGenSelect.addEventListener('change', async (event) => {
|
72 |
-
const value = event.target.value;
|
73 |
-
|
74 |
-
try {
|
75 |
-
imageGenImage.src = await textToImage(value);
|
76 |
-
imageGenImage.alt = value + ' generated from BigGAN AI model';
|
77 |
-
} catch (err) {
|
78 |
-
console.error(err);
|
79 |
-
}
|
80 |
-
});
|
81 |
-
|
82 |
-
textGenForm.addEventListener('submit', async (event) => {
|
83 |
-
event.preventDefault();
|
84 |
-
|
85 |
-
const textGenInput = document.getElementById('text-gen-input');
|
86 |
-
const textGenParagraph = document.querySelector('.text-gen-output');
|
87 |
-
|
88 |
-
try {
|
89 |
-
textGenParagraph.textContent = await translateText(textGenInput.value);
|
90 |
-
} catch (err) {
|
91 |
-
console.error(err);
|
92 |
-
}
|
93 |
-
});
|
94 |
-
|
95 |
-
tableButtonPrev.addEventListener('click', () => {
|
96 |
-
cursor = cursor > RANGE ? cursor - RANGE : 0;
|
97 |
-
|
98 |
-
if (cursor < RANGE) {
|
99 |
-
tableButtonPrev.classList.add('hidden');
|
100 |
-
}
|
101 |
-
if (cursor < LIMIT - RANGE) {
|
102 |
-
tableButtonNext.classList.remove('hidden');
|
103 |
-
}
|
104 |
-
|
105 |
-
updateTable(cursor);
|
106 |
-
});
|
107 |
-
|
108 |
-
tableButtonNext.addEventListener('click', () => {
|
109 |
-
cursor = cursor < LIMIT - RANGE ? cursor + RANGE : cursor;
|
110 |
-
|
111 |
-
if (cursor >= RANGE) {
|
112 |
-
tableButtonPrev.classList.remove('hidden');
|
113 |
-
}
|
114 |
-
if (cursor >= LIMIT - RANGE) {
|
115 |
-
tableButtonNext.classList.add('hidden');
|
116 |
-
}
|
117 |
-
|
118 |
-
updateTable(cursor);
|
119 |
-
});
|
120 |
-
|
121 |
-
textToImage(imageGenSelect.value)
|
122 |
-
.then((image) => (imageGenImage.src = image))
|
123 |
-
.catch(console.error);
|
124 |
-
|
125 |
-
updateTable(cursor)
|
126 |
-
.catch(console.error);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inference.py
DELETED
@@ -1,11 +0,0 @@
|
|
1 |
-
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
2 |
-
|
3 |
-
tokenizer = T5Tokenizer.from_pretrained("t5-small")
|
4 |
-
model = T5ForConditionalGeneration.from_pretrained("t5-small")
|
5 |
-
|
6 |
-
|
7 |
-
def infer_t5(input):
|
8 |
-
input_ids = tokenizer(input, return_tensors="pt").input_ids
|
9 |
-
outputs = model.generate(input_ids)
|
10 |
-
|
11 |
-
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
style.css
DELETED
@@ -1,79 +0,0 @@
|
|
1 |
-
body {
|
2 |
-
--text: hsl(0 0% 15%);
|
3 |
-
padding: 2.5rem;
|
4 |
-
font-family: sans-serif;
|
5 |
-
color: var(--text);
|
6 |
-
}
|
7 |
-
body.dark-theme {
|
8 |
-
--text: hsl(0 0% 90%);
|
9 |
-
background-color: hsl(223 39% 7%);
|
10 |
-
}
|
11 |
-
|
12 |
-
main {
|
13 |
-
max-width: 80rem;
|
14 |
-
text-align: center;
|
15 |
-
}
|
16 |
-
|
17 |
-
section {
|
18 |
-
display: flex;
|
19 |
-
flex-direction: column;
|
20 |
-
align-items: center;
|
21 |
-
}
|
22 |
-
|
23 |
-
a {
|
24 |
-
color: var(--text);
|
25 |
-
}
|
26 |
-
|
27 |
-
select, input, button, .text-gen-output {
|
28 |
-
padding: 0.5rem 1rem;
|
29 |
-
}
|
30 |
-
|
31 |
-
select, img, input {
|
32 |
-
margin: 0.5rem auto 1rem;
|
33 |
-
}
|
34 |
-
|
35 |
-
form {
|
36 |
-
width: 25rem;
|
37 |
-
margin: 0 auto;
|
38 |
-
}
|
39 |
-
|
40 |
-
input {
|
41 |
-
width: 70%;
|
42 |
-
}
|
43 |
-
|
44 |
-
button {
|
45 |
-
cursor: pointer;
|
46 |
-
}
|
47 |
-
|
48 |
-
.text-gen-output {
|
49 |
-
min-height: 1.2rem;
|
50 |
-
margin: 1rem;
|
51 |
-
border: 0.5px solid grey;
|
52 |
-
}
|
53 |
-
|
54 |
-
#dataset button {
|
55 |
-
width: 6rem;
|
56 |
-
margin: 0.5rem;
|
57 |
-
}
|
58 |
-
|
59 |
-
#dataset button.hidden {
|
60 |
-
visibility: hidden;
|
61 |
-
}
|
62 |
-
|
63 |
-
table {
|
64 |
-
max-width: 40rem;
|
65 |
-
text-align: left;
|
66 |
-
border-collapse: collapse;
|
67 |
-
}
|
68 |
-
|
69 |
-
thead {
|
70 |
-
font-weight: bold;
|
71 |
-
}
|
72 |
-
|
73 |
-
td {
|
74 |
-
padding: 0.5rem;
|
75 |
-
}
|
76 |
-
|
77 |
-
td:not(thead td) {
|
78 |
-
border: 0.5px solid grey;
|
79 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|