Spaces:
Runtime error
Runtime error
File size: 1,424 Bytes
56fce04 8ee89fb 56fce04 de86ce3 56fce04 8ee89fb 56fce04 51b626b 56fce04 de86ce3 56fce04 de86ce3 56fce04 51b626b 56fce04 de86ce3 56fce04 51b626b 56fce04 de86ce3 56fce04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import gradio as gr
import tensorflow as tf
from PIL import Image
import numpy as np
labels = ['Haunter', 'Gengar', 'Ditto', 'Vulpix']
def predict_pokemon_type(uploaded_file):
if uploaded_file is None:
return "No file uploaded.", None, "No prediction"
model = tf.keras.models.load_model('pokemon-model_2_transferlearning.keras')
# Load the image from the file path
with Image.open(uploaded_file) as img:
img = img.resize((150, 150))
img_array = np.array(img)
prediction = model.predict(np.expand_dims(img_array, axis=0))
confidences = {labels[i]: np.round(float(prediction[0][i]), 2) for i in range(len(labels))}
# Identify the most confident prediction
confidences = {labels[i]: np.round(float(prediction[0][i]), 2) for i in range(len(labels))}
return img, confidences
# Define the Gradio interface
iface = gr.Interface(
fn=predict_pokemon_type, # Function to process the input
inputs=gr.File(label="Upload File"), # File upload widget
outputs=["image", "text"], # Output types for image and text
title="Pokemon Classifier", # Title of the interface
description="Upload a picture of a Pokemon (preferably Cubone, Ditto, Psyduck, Snorlax, or Weedle) to see its type and confidence level. The trained model has an accuracy of 96%!" # Description of the interface
)
# Launch the interface
iface.launch() |