owaiskha9654 commited on
Commit
3cb5cab
β€’
1 Parent(s): 3aa67a5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -19
app.py CHANGED
@@ -22,25 +22,37 @@ model.config.id2label={
22
  "4": "Openness",}
23
 
24
  def Personality_Detection_from_reviews_submitted (model_input: str) -> Dict[str, float]:
25
- # Encoding input data
26
- dict_custom={}
27
- Preprocess_part1=model_input[:len(model_input)]
28
- Preprocess_part2=model_input[len(model_input):]
29
- dict1=tokenizer.encode_plus(Preprocess_part1,max_length=1024,padding=True,truncation=True)
30
- dict2=tokenizer.encode_plus(Preprocess_part2,max_length=1024,padding=True,truncation=True)
31
- dict_custom['input_ids']=[dict1['input_ids'],dict1['input_ids']]
32
- dict_custom['token_type_ids']=[dict1['token_type_ids'],dict1['token_type_ids']]
33
- dict_custom['attention_mask']=[dict1['attention_mask'],dict1['attention_mask']]
34
- outs = model(torch.tensor(dict_custom['input_ids']), token_type_ids=None, attention_mask=torch.tensor(dict_custom['attention_mask']))
35
- b_logit_pred = outs[0]
36
- pred_label = torch.sigmoid(b_logit_pred)
37
- ret ={
38
- "Extroversion": float(pred_label[0][0]),
39
- "Neuroticism": float(pred_label[0][1]),
40
- "Agreeableness": float(pred_label[0][2]),
41
- "Conscientiousness": float(pred_label[0][3]),
42
- "Openness": float(pred_label[0][4]),}
43
- return ret
 
 
 
 
 
 
 
 
 
 
 
 
44
  model_input = gr.Textbox("Input text here (Note: This model is trained to classify Big Five Personality Traits From Expository text features)", show_label=False)
45
  model_output = gr.Label(" Big-Five personality traits Result", num_top_classes=6, show_label=True, label="Big-Five personality traits Labels assigned to this text based on its features")
46
  examples = [
 
22
  "4": "Openness",}
23
 
24
  def Personality_Detection_from_reviews_submitted (model_input: str) -> Dict[str, float]:
25
+ if len(model_input)<20:
26
+ ret ={
27
+ "Extroversion": float(0),
28
+ "Neuroticism": float(0),
29
+ "Agreeableness": float(0),
30
+ "Conscientiousness": float(0),
31
+ "Openness": float(0),}
32
+ return ret
33
+
34
+
35
+
36
+ else:
37
+ # Encoding input data
38
+ dict_custom={}
39
+ Preprocess_part1=model_input[:len(model_input)]
40
+ Preprocess_part2=model_input[len(model_input):]
41
+ dict1=tokenizer.encode_plus(Preprocess_part1,max_length=1024,padding=True,truncation=True)
42
+ dict2=tokenizer.encode_plus(Preprocess_part2,max_length=1024,padding=True,truncation=True)
43
+ dict_custom['input_ids']=[dict1['input_ids'],dict1['input_ids']]
44
+ dict_custom['token_type_ids']=[dict1['token_type_ids'],dict1['token_type_ids']]
45
+ dict_custom['attention_mask']=[dict1['attention_mask'],dict1['attention_mask']]
46
+ outs = model(torch.tensor(dict_custom['input_ids']), token_type_ids=None, attention_mask=torch.tensor(dict_custom['attention_mask']))
47
+ b_logit_pred = outs[0]
48
+ pred_label = torch.sigmoid(b_logit_pred)
49
+ ret ={
50
+ "Extroversion": float(pred_label[0][0]),
51
+ "Neuroticism": float(pred_label[0][1]),
52
+ "Agreeableness": float(pred_label[0][2]),
53
+ "Conscientiousness": float(pred_label[0][3]),
54
+ "Openness": float(pred_label[0][4]),}
55
+ return ret
56
  model_input = gr.Textbox("Input text here (Note: This model is trained to classify Big Five Personality Traits From Expository text features)", show_label=False)
57
  model_output = gr.Label(" Big-Five personality traits Result", num_top_classes=6, show_label=True, label="Big-Five personality traits Labels assigned to this text based on its features")
58
  examples = [