owaiskha9654 commited on
Commit
2f4edc1
·
1 Parent(s): 28eab87

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -17
app.py CHANGED
@@ -44,29 +44,32 @@ outputs_cls = gr.Label(label= "Categories Detected Proportion Statistics" )
44
  Custom_description="<center>Custom Training Performed on Kaggle <a href='https://www.kaggle.com/code/owaiskhan9654/shelf-object-detection-yolov7-pytorch/notebook' style='text-decoration: underline' target='_blank'>Link</a> </center><br> <center>Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors </center> <br> Works on around <b>140</b> general items in Stores"
45
 
46
  Footer = (
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
  "<br><br><br><br><center>Model Trained by: Owais Ahmad Data Scientist at <b><a href=\"https://thoucentric.com/\">Thoucentric</a></b><br></center>"
48
 
49
  "<center> Model Trained Kaggle Kernel <a href=\"https://www.kaggle.com/code/owaiskhan9654/shelf-object-detection-yolov7-pytorch/notebook\">Link</a> <br></center>"
50
 
51
 
52
  "<center> HuggingFace🤗 Model Deployed Repository <a href=\"https://huggingface.co/thoucentric/Shelf_Objects_Detection_Yolov7_Pytorch\">Link</a> <br></center>"
53
-
54
- "<center>Item Classes it will detect -
55
- 'Drawbar box', 'Disposable cups', 'Makeup tools', 'Television', 'Toothpaste', 'Herbal tea', 'Skate', 'Coat hanger','Soy sauce',
56
- 'Tea beverage', 'Sour Plum Soup', 'Pie', 'Chopping block', 'Refrigerator', 'Trousers', 'Oats', 'Rubber ball', 'Soap', 'Pasta', 'Juicer',
57
- 'Walnut powder', 'Toothbrush', 'Chopsticks', 'Mouth wash', 'Adult socks', 'Dinner plate', 'Baby milk powder', 'Soymilk', 'Cutter', 'Hair drier',
58
- 'Electric frying pan', 'Children hats', 'Cake', 'Trash', 'Children underwear', 'Guozhen', 'Disposable bag', 'Jacket', 'Baby carriage', 'Bowl',
59
- 'Baby tableware', 'Emulsion', 'Red wine', 'Mixed congee', 'Spoon', 'Dried meat', 'Dairy', 'Chewing gum', 'Cooking wine', 'Electromagnetic furnace',
60
- 'Facial Cleanser', 'Sports cup', 'Quick-frozen Wonton', 'Dried fish', 'Rice cooker', 'Children shoes', 'Band aid', 'Biscuits', 'Soybean Milk machine',
61
- 'Pen', 'Baby crib', 'Hair gel', 'Children Toys', 'Ice cream', 'Washing machine', 'Hot strips', 'Air conditioning fan', 'Pencil case', 'Hair conditioner',
62
- 'Razor', 'Children Socks', 'Basin', 'Chocolates', 'Shampoo', 'Soup ladle', 'Men underwear', 'Baby washing and nursing supplies', 'Noodle', 'Tampon',
63
- 'Forks', 'Liquor and Spirits', 'Bath lotion', 'Knives', 'Quick-frozen dumplings', 'Socket', 'Notebook', 'Bedding set', 'Storage box', 'Ginger Tea',
64
- 'Basketball', 'Baby Toys', 'Storage bottle', 'Instant noodles', 'Baby Furniture', 'Thermos bottle', 'Hair dye', 'Fish tofu', 'Vinegar', 'Comb',
65
- 'Carbonated drinks', 'Sauce', 'Adult shoes', 'Quick-frozen Tangyuan', 'Stool', 'Football', 'Baby diapers', 'Lotus root flour', 'Air conditioner',
66
- 'Badminton', 'Knapsack', 'Adult Diapers', 'Flour', 'Sesame paste', 'Pot shovel', 'Electric kettle', 'Mug', 'Electric iron', 'Lingerie', 'Tea',
67
- 'Food box', 'Electric Hot pot', 'Baby slippers', 'Potato chips', 'Electric steaming pan', 'Rise', 'Adult hat', 'Can', 'Care Kit', 'Cotton swab',
68
- 'Baby handkerchiefs ', 'Fresh-keeping film', 'Dried beans', 'Electric fan', 'Desk lamp', 'Cocktail', 'Skincare set', 'Adult milk powder',
69
- 'Microwave Oven', 'Coffee', 'Facial mask'</center>"
70
  )
71
 
72
  examples1=[["Images/Image1.jpg"],["Images/Image2.jpg"],["Images/Image3.jpg"],["Images/Image4.jpg"],["Images/Image5.jpg"],["Images/Image6.jpg"]]
 
44
  Custom_description="<center>Custom Training Performed on Kaggle <a href='https://www.kaggle.com/code/owaiskhan9654/shelf-object-detection-yolov7-pytorch/notebook' style='text-decoration: underline' target='_blank'>Link</a> </center><br> <center>Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors </center> <br> Works on around <b>140</b> general items in Stores"
45
 
46
  Footer = (
47
+
48
+ "<br><br><br><br><center><b>Item Classes it will detect(Total 140 Classes) -</b> "
49
+ "'Drawbar box', 'Disposable cups', 'Makeup tools', 'Television', 'Toothpaste', 'Herbal tea', 'Skate', 'Coat hanger', 'Soy sauce', "
50
+ "'Tea beverage', 'Sour Plum Soup', 'Pie', 'Chopping block', 'Refrigerator', 'Trousers', 'Oats', 'Rubber ball', 'Soap', 'Pasta', 'Juicer', "
51
+ "'Walnut powder', 'Toothbrush', 'Chopsticks', 'Mouth wash', 'Adult socks', 'Dinner plate', 'Baby milk powder', 'Soymilk', 'Cutter', 'Hair drier', "
52
+ "'Electric frying pan', 'Children hats', 'Cake', 'Trash', 'Children underwear', 'Guozhen', 'Disposable bag', 'Jacket', 'Baby carriage', 'Bowl', "
53
+ "'Baby tableware', 'Emulsion', 'Red wine', 'Mixed congee', 'Spoon', 'Dried meat', 'Dairy', 'Chewing gum', 'Cooking wine', 'Electromagnetic furnace', "
54
+ "'Facial Cleanser', 'Sports cup', 'Quick-frozen Wonton', 'Dried fish', 'Rice cooker', 'Children shoes', 'Band aid', 'Biscuits', 'Soybean Milk machine', "
55
+ "'Pen', 'Baby crib', 'Hair gel', 'Children Toys', 'Ice cream', 'Washing machine', 'Hot strips', 'Air conditioning fan', 'Pencil case', 'Hair conditioner',"
56
+ "'Razor', 'Children Socks', 'Basin', 'Chocolates', 'Shampoo', 'Soup ladle', 'Men underwear', 'Baby washing and nursing supplies', 'Noodle', 'Tampon', "
57
+ "'Forks', 'Liquor and Spirits', 'Bath lotion', 'Knives', 'Quick-frozen dumplings', 'Socket', 'Notebook', 'Bedding set', 'Storage box', 'Ginger Tea', "
58
+ "'Basketball', 'Baby Toys', 'Storage bottle', 'Instant noodles', 'Baby Furniture', 'Thermos bottle', 'Hair dye', 'Fish tofu', 'Vinegar', 'Comb', "
59
+ "'Carbonated drinks', 'Sauce', 'Adult shoes', 'Quick-frozen Tangyuan', 'Stool', 'Football', 'Baby diapers', 'Lotus root flour', 'Air conditioner', "
60
+ "'Badminton', 'Knapsack', 'Adult Diapers', 'Flour', 'Sesame paste', 'Pot shovel', 'Electric kettle', 'Mug', 'Electric iron', 'Lingerie', 'Tea', "
61
+ "'Food box', 'Electric Hot pot', 'Baby slippers', 'Potato chips', 'Electric steaming pan', 'Rise', 'Adult hat', 'Can', 'Care Kit', 'Cotton swab', "
62
+ "'Baby handkerchiefs ', 'Fresh-keeping film', 'Dried beans', 'Electric fan', 'Desk lamp', 'Cocktail', 'Skincare set', 'Adult milk powder', "
63
+ "'Microwave Oven', 'Coffee', 'Facial mask'</center>"
64
+
65
  "<br><br><br><br><center>Model Trained by: Owais Ahmad Data Scientist at <b><a href=\"https://thoucentric.com/\">Thoucentric</a></b><br></center>"
66
 
67
  "<center> Model Trained Kaggle Kernel <a href=\"https://www.kaggle.com/code/owaiskhan9654/shelf-object-detection-yolov7-pytorch/notebook\">Link</a> <br></center>"
68
 
69
 
70
  "<center> HuggingFace🤗 Model Deployed Repository <a href=\"https://huggingface.co/thoucentric/Shelf_Objects_Detection_Yolov7_Pytorch\">Link</a> <br></center>"
71
+ "<center>&copy; 2023 <b><a href=\"https://thoucentric.com/\">Thoucentric</a></b> </center>"
72
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
  )
74
 
75
  examples1=[["Images/Image1.jpg"],["Images/Image2.jpg"],["Images/Image3.jpg"],["Images/Image4.jpg"],["Images/Image5.jpg"],["Images/Image6.jpg"]]