import torch import gradio as gr from huggingface_hub import hf_hub_download from PIL import Image REPO_ID = "thoucentric/Shelf_Objects_Detection_Yolov7_Pytorch" FILENAME = "best.pt" yolov7_custom_weights = hf_hub_download(repo_id=REPO_ID, filename=FILENAME) model = torch.hub.load('Owaiskhan9654/yolov7-1:main',model='custom', path_or_model=yolov7_custom_weights, force_reload=True) # Github repository https://github.com/Owaiskhan9654 def object_detection( image: gr.inputs.Image = None, model_path: gr.inputs.Dropdown = None, image_size: gr.inputs.Slider = 640, conf_threshold: gr.inputs.Slider = 0.25, iou_threshold: gr.inputs.Slider = 0.45,): results = model(image) results.render() count_dict = results.pandas().xyxy[0]['name'].value_counts().to_dict() if len(count_dict)>0: return Image.fromarray(results.imgs[0]),str(count_dict) else: return Image.fromarray(results.imgs[0]),'No object Found. Add more Custom classes in the training set' title = "Yolov7 Custom" # image = gr.inputs.Image(shape=(640, 640), image_mode="RGB", source="upload", label="Upload Image", optional=False) inputs = [ gr.inputs.Image(shape=(640, 640), image_mode="RGB", source="upload", label="Upload Image", optional=False), gr.inputs.Dropdown(["best.pt",], default="best.pt", label="Model"), gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"), gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"), gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"), ] outputs = gr.outputs.Image(type="pil", label="Output Image") outputs_cls = gr.Label(label= "Categories Detected Proportion Statistics" ) Custom_description="
Custom Training Performed on Kaggle Link

Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors

on around 140 general items in Stores" Footer = ( "



Model Trained by: Owais Ahmad Data Scientist at Thoucentric Visit Profile
" "
Model Trained Kaggle Kernel Link
" "
HuggingFace🤗 Model Deployed Repository Link
" ) examples1=[["Images/Image1.jpg"],["Images/Image2.jpg"],["Images/Image3.jpg"],["Images/Image4.jpg"],["Images/Image5.jpg"],["Images/Image6.jpg"]] Top_Title="


Yolov7 🚀 Custom Trained by Owais Ahmad
on around 140 general items in Stores" css = ".output-image, .input-image {height: 50rem !important; width: 100% !important;}" css = ".image-preview {height: auto !important;}" gr.Interface( fn=object_detection, inputs=inputs, outputs=[outputs,outputs_cls], title=Top_Title, description=Custom_description, article=Footer, # cache= True, # allow_flagging='never', examples=examples1).launch(debug=True)