File size: 21,803 Bytes
79b274c e377d5f 79b274c 33e672b df6ff27 33e672b b25ca7f 33e672b b25ca7f 33e672b b25ca7f 33e672b b25ca7f 33e672b c8ef0ce 33e672b b25ca7f c8ef0ce b25ca7f 33e672b b25ca7f 33e672b b25ca7f 33e672b d64dc21 33e672b d64dc21 33e672b d64dc21 33e672b d64dc21 33e672b d64dc21 33e672b d64dc21 33e672b d64dc21 33e672b d64dc21 33e672b d64dc21 33e672b d64dc21 33e672b d64dc21 33e672b 7cf4a2b 33e672b 7cf4a2b 33e672b 7cf4a2b 33e672b d64dc21 33e672b d64dc21 33e672b d64dc21 33e672b f21bf1a 33e672b f21bf1a 33e672b 248accb 1e78681 b25ca7f 33e672b 6637dcf b25ca7f 33e672b f90c911 33e672b 00039a6 33e672b f90c911 33e672b 00039a6 33e672b 79ea3d6 33e672b f21bf1a cb98eee e357352 2278b51 d93ee54 0ab9414 d93ee54 0e85ecd e357352 2278b51 e357352 0e85ecd e357352 2278b51 e357352 0e85ecd e357352 2278b51 e357352 0e85ecd e357352 f21bf1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 |
import gradio as gr
import os
import zipfile
import json
from io import BytesIO
import base64
from PIL import Image
import uuid
import tempfile
import numpy as np
import time
# Function to save dataset to zip
def save_dataset_to_zip(dataset_name, dataset):
temp_dir = tempfile.mkdtemp()
dataset_path = os.path.join(temp_dir, dataset_name)
os.makedirs(dataset_path, exist_ok=True)
images_dir = os.path.join(dataset_path, 'images')
os.makedirs(images_dir, exist_ok=True)
annotations = []
for idx, entry in enumerate(dataset):
image_data = entry['image']
prompt = entry['prompt']
# Save image to images directory
image_filename = f"{uuid.uuid4().hex}.png"
image_path = os.path.join(images_dir, image_filename)
# Decode the base64 image data
image = Image.open(BytesIO(base64.b64decode(image_data.split(",")[1])))
image.save(image_path)
# Add annotation
annotations.append({
'file_name': os.path.join('images', image_filename),
'text': prompt
})
# Save annotations to JSONL file
annotations_path = os.path.join(dataset_path, 'annotations.jsonl')
with open(annotations_path, 'w') as f:
for ann in annotations:
f.write(json.dumps(ann) + '\n')
# Create a zip file with the dataset_name as the top-level folder
zip_buffer = BytesIO()
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zipf:
for root, dirs, files in os.walk(dataset_path):
for file in files:
abs_file = os.path.join(root, file)
rel_file = os.path.relpath(abs_file, temp_dir)
zipf.write(abs_file, rel_file)
zip_buffer.seek(0)
return zip_buffer
# Function to load dataset from zip
def load_dataset_from_zip(zip_file_path):
temp_dir = tempfile.mkdtemp()
try:
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
zip_ref.extractall(temp_dir)
# Get dataset name from zip file name
dataset_name_guess = os.path.splitext(os.path.basename(zip_file_path))[0]
dataset_path = os.path.join(temp_dir, dataset_name_guess)
if os.path.exists(dataset_path):
dataset_name = dataset_name_guess
else:
# If the dataset_name directory doesn't exist, try to find the top-level directory
entries = [entry for entry in os.listdir(temp_dir) if os.path.isdir(os.path.join(temp_dir, entry))]
if entries:
dataset_name = entries[0]
dataset_path = os.path.join(temp_dir, dataset_name)
else:
# Files are directly in temp_dir
dataset_name = dataset_name_guess
dataset_path = temp_dir
annotations_path = os.path.join(dataset_path, 'annotations.jsonl')
dataset = []
if os.path.exists(annotations_path):
with open(annotations_path, 'r') as f:
for line in f:
ann = json.loads(line)
file_name = ann['file_name']
prompt = ann['text']
image_path = os.path.join(dataset_path, file_name)
# Read image and convert to base64
with open(image_path, 'rb') as img_f:
image_bytes = img_f.read()
encoded = base64.b64encode(image_bytes).decode()
mime_type = "image/png"
image_data = f"data:{mime_type};base64,{encoded}"
dataset.append({
'image': image_data,
'prompt': prompt
})
else:
# If annotations file not found
return None, []
return dataset_name, dataset
except Exception as e:
print(f"Error loading dataset: {e}")
return None, []
# Function to display dataset as HTML
def display_dataset_html(dataset, page_number=0, items_per_page=2):
if dataset:
start_idx = page_number * items_per_page
end_idx = start_idx + items_per_page
dataset_slice = dataset[start_idx:end_idx]
html_content = '''
<div style="display: flex; overflow-x: auto; padding: 10px; border: 1px solid #ccc;">'''
for idx_offset, entry in enumerate(dataset_slice):
idx = start_idx + idx_offset
image_data = entry['image']
prompt = entry['prompt']
# Decode base64 image data to numpy array
image_bytes = base64.b64decode(image_data.split(",")[1])
image = Image.open(BytesIO(image_bytes))
# Compress image
image.thumbnail((100, 100)) # Resize image to 100x100 pixels
buffered = BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
img_data = f"data:image/png;base64,{img_str}"
html_content += f"""
<div style="display: flex; flex-direction: column; align-items: center; margin-right: 20px;">'''
<div style="margin-bottom: 5px;">{idx}</div>
<img src="{img_data}" alt="Image {idx}" style="max-height: 150px;"/>
<div style="max-width: 150px; word-wrap: break-word; text-align: center;">{prompt}</div>
</div>
"""
html_content += '</div>'
return html_content
else:
return "<div>No entries in dataset.</div>"
# Interface
with gr.Blocks() as demo:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1px;'>Dataset Creator</h1>")
gr.Markdown("You must create/upload a dataset before selecting one")
datasets = gr.State({})
current_dataset_name = gr.State("")
current_page_number = gr.State(0)
dataset_html = gr.HTML() # Define dataset_html here
# Top-level components
with gr.Column():
dataset_selector = gr.Dropdown(label="Select Dataset", interactive=True)
message_box = gr.Textbox(interactive=False, label="Message")
# Tabs
with gr.Tabs():
with gr.TabItem("Create / Upload Dataset"):
with gr.Row():
with gr.Column():
gr.Markdown("### Create a New Dataset")
dataset_name_input = gr.Textbox(label="New Dataset Name")
create_button = gr.Button("Create Dataset")
with gr.Column():
gr.Markdown("### Upload Existing Dataset")
upload_input = gr.File(label="Upload Dataset Zip", type="filepath", file_types=['.zip'])
upload_button = gr.Button("Upload Dataset")
def create_dataset(name, datasets):
if not name:
return gr.update(), "Please enter a dataset name."
if name in datasets:
return gr.update(), f"Dataset '{name}' already exists."
datasets[name] = []
return gr.update(choices=list(datasets.keys()), value=name), f"Dataset '{name}' created."
create_button.click(
create_dataset,
inputs=[dataset_name_input, datasets],
outputs=[dataset_selector, message_box]
)
def upload_dataset(zip_file_path, datasets):
if not zip_file_path:
return gr.update(), "Please upload a zip file."
dataset_name, dataset = load_dataset_from_zip(zip_file_path)
if dataset_name is None:
return gr.update(), "Failed to load dataset from zip file."
if dataset_name in datasets:
return gr.update(), f"Dataset '{dataset_name}' already exists."
datasets[dataset_name] = dataset
return gr.update(choices=list(datasets.keys()), value=dataset_name), f"Dataset '{dataset_name}' uploaded."
upload_button.click(
upload_dataset,
inputs=[upload_input, datasets],
outputs=[dataset_selector, message_box]
)
with gr.TabItem("Add Entry"):
with gr.Row():
image_input = gr.Image(label="Upload Image", type="numpy")
prompt_input = gr.Textbox(label="Prompt")
add_button = gr.Button("Add Entry")
def add_entry(image_data, prompt, current_dataset_name, datasets):
if not current_dataset_name:
return datasets, gr.update(), gr.update(), "No dataset selected."
if image_data is None or not prompt:
return datasets, gr.update(), gr.update(), "Please provide both an image and a prompt."
# Convert image_data to base64
image = Image.fromarray(image_data.astype('uint8'))
buffered = BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
img_data = f"data:image/png;base64,{img_str}"
datasets[current_dataset_name].append({'image': img_data, 'prompt': prompt})
dataset = datasets[current_dataset_name]
# Reset page number to 0 and refresh HTML
page_number = 0
dataset = datasets[current_dataset_name]
html_content = display_dataset_html(dataset, page_number=page_number)
return datasets, page_number, gr.update(value=html_content), f"Entry added to dataset '{current_dataset_name}'."
add_button.click(
add_entry,
inputs=[image_input, prompt_input, current_dataset_name, datasets],
outputs=[datasets, current_page_number, dataset_html, message_box]
)
with gr.TabItem("Edit / Delete Entry"):
with gr.Column():
selected_image = gr.Image(label="Selected Image", interactive=False, type="numpy")
selected_prompt = gr.Textbox(label="Current Prompt", interactive=False)
# Define entry_selector here
entry_selector = gr.Dropdown(label="Select Entry to Edit/Delete")
new_prompt_input = gr.Textbox(label="New Prompt (for Edit)")
with gr.Row():
edit_button = gr.Button("Edit Entry")
delete_button = gr.Button("Delete Entry")
def update_selected_entry(entry_option, current_dataset_name, datasets):
if not current_dataset_name or not entry_option:
return gr.update(), gr.update()
index = int(entry_option.split(":")[0])
entry = datasets[current_dataset_name][index]
image_data = entry['image']
prompt = entry['prompt']
# Decode base64 image data to numpy array
image_bytes = base64.b64decode(image_data.split(",")[1])
image = Image.open(BytesIO(image_bytes))
image_array = np.array(image)
return gr.update(value=image_array), gr.update(value=prompt)
entry_selector.change(
update_selected_entry,
inputs=[entry_selector, current_dataset_name, datasets],
outputs=[selected_image, selected_prompt]
)
def edit_entry(entry_option, new_prompt, current_dataset_name, datasets, current_page_number):
if not current_dataset_name:
return datasets, gr.update(), gr.update(), gr.update(), f"No dataset selected."
if not entry_option or not new_prompt.strip():
return datasets, gr.update(), gr.update(), gr.update(), f"Please select an entry and provide a new prompt."
index = int(entry_option.split(":")[0])
datasets[current_dataset_name][index]['prompt'] = new_prompt
dataset = datasets[current_dataset_name]
html_content = display_dataset_html(dataset, page_number=current_page_number)
# Update entry_selector options
entry_options = [f"{idx}: {entry['prompt'][:30]}" for idx, entry in enumerate(dataset)]
return datasets, gr.update(value=html_content), gr.update(choices=entry_options), gr.update(value=""), f"Entry {index} updated."
edit_button.click(
edit_entry,
inputs=[entry_selector, new_prompt_input, current_dataset_name, datasets, current_page_number],
outputs=[datasets, dataset_html, entry_selector, new_prompt_input, message_box]
)
def delete_entry(entry_option, current_dataset_name, datasets, current_page_number):
if not current_dataset_name:
return datasets, gr.update(), gr.update(), gr.update(), gr.update(), "No dataset selected."
if not entry_option:
return datasets, gr.update(), gr.update(), gr.update(), gr.update(), "Please select an entry to delete."
index = int(entry_option.split(":")[0])
del datasets[current_dataset_name][index]
dataset = datasets[current_dataset_name]
html_content = display_dataset_html(dataset, page_number=current_page_number)
# Update entry_selector options
entry_options = [f"{idx}: {entry['prompt'][:30]}" for idx, entry in enumerate(dataset)]
return datasets, gr.update(value=html_content), gr.update(choices=entry_options), gr.update(value=None), f"Entry {index} deleted."
delete_button.click(
delete_entry,
inputs=[entry_selector, current_dataset_name, datasets, current_page_number],
outputs=[datasets, dataset_html, entry_selector, selected_image, message_box]
)
# Function to update entry_selector options
def update_entry_selector(current_dataset_name, datasets):
if current_dataset_name in datasets:
dataset = datasets[current_dataset_name]
entry_options = [f"{idx}: {entry['prompt'][:30]}" for idx, entry in enumerate(dataset)]
return gr.update(choices=entry_options)
else:
return gr.update(choices=[])
# Update entry_selector when dataset is selected
dataset_selector.change(
update_entry_selector,
inputs=[current_dataset_name, datasets],
outputs=[entry_selector]
)
# Also update entry_selector when an entry is added in "Add Entry" tab
add_button.click(
update_entry_selector,
inputs=[current_dataset_name, datasets],
outputs=[entry_selector]
)
with gr.TabItem("Download Dataset"):
download_button = gr.Button("Download Dataset")
download_output = gr.File(label="Download Zip", interactive=False)
def download_dataset(current_dataset_name, datasets):
if not current_dataset_name:
return None, "No dataset selected."
if not datasets[current_dataset_name]:
return None, "Dataset is empty."
zip_buffer = save_dataset_to_zip(current_dataset_name, datasets[current_dataset_name])
# Write zip_buffer to a temporary file
temp_dir = tempfile.mkdtemp()
zip_path = os.path.join(temp_dir, f"{current_dataset_name}.zip")
with open(zip_path, 'wb') as f:
f.write(zip_buffer.getvalue())
return zip_path, f"Dataset '{current_dataset_name}' is ready for download."
download_button.click(
download_dataset,
inputs=[current_dataset_name, datasets],
outputs=[download_output, message_box]
)
def select_dataset(dataset_name, datasets):
if dataset_name in datasets:
dataset = datasets[dataset_name]
html_content = display_dataset_html(dataset, page_number=0)
return dataset_name, 0, gr.update(value=html_content), f"Dataset '{dataset_name}' selected."
else:
return "", 0, gr.update(value="<div>Select a dataset.</div>"), ""
dataset_selector.change(
select_dataset,
inputs=[dataset_selector, datasets],
outputs=[current_dataset_name, current_page_number, dataset_html, message_box]
)
# Dataset Viewer and Pagination Controls at the Bottom
with gr.Column():
gr.Markdown("### Dataset Viewer")
dataset_viewer = gr.HTML() # Use dataset_viewer instead of dataset_html
with gr.Row():
prev_button = gr.Button("Previous Page")
next_button = gr.Button("Next Page")
def change_page(action, current_page_number, datasets, current_dataset_name):
if not current_dataset_name:
return current_page_number, gr.update(), "No dataset selected."
dataset = datasets[current_dataset_name]
total_pages = (len(dataset) - 1) // 5 + 1
if action == "next":
if current_page_number + 1 < total_pages:
current_page_number += 1
elif action == "prev":
if current_page_number > 0:
current_page_number -= 1
html_content = display_dataset_html(dataset, page_number=current_page_number)
return current_page_number, gr.update(value=html_content), ""
prev_button.click(
fn=lambda current_page_number, datasets, current_dataset_name: change_page("prev", current_page_number, datasets, current_dataset_name),
inputs=[current_page_number, datasets, current_dataset_name],
outputs=[current_page_number, dataset_viewer, message_box]
)
next_button.click(
fn=lambda current_page_number, datasets, current_dataset_name: change_page("next", current_page_number, datasets, current_dataset_name),
inputs=[current_page_number, datasets, current_dataset_name],
outputs=[current_page_number, dataset_viewer, message_box]
)
# Initialize dataset_selector
def initialize_components(datasets):
return gr.update(choices=list(datasets.keys()))
demo.load(
initialize_components,
inputs=[datasets],
outputs=[dataset_selector]
)
# Hide dataset_html
dataset_html.visible = False
# Update all components when a dataset is selected
def update_all_components(current_dataset_name, datasets):
while current_dataset_name not in datasets:
time.sleep(0.1) # Wait until dataset is loaded
dataset = datasets[current_dataset_name]
html_content = display_dataset_html(dataset, page_number=0)
entry_options = [f"{idx}: {entry['prompt'][:30]}" for idx, entry in enumerate(dataset)]
dataset_viewer.update(value=html_content) # Update dataset_viewer component
return gr.update(value=html_content), gr.update(choices=entry_options)
dataset_selector.change(
update_all_components,
inputs=[current_dataset_name, datasets],
outputs=[dataset_viewer, entry_selector]
)
# Update all components when an entry is added
def update_all_components_after_add(current_dataset_name, datasets):
while current_dataset_name not in datasets:
time.sleep(0.1) # Wait until dataset is loaded
dataset = datasets[current_dataset_name]
html_content = display_dataset_html(dataset, page_number=0)
entry_options = [f"{idx}: {entry['prompt'][:30]}" for idx, entry in enumerate(dataset)]
dataset_viewer.update(value=html_content) # Update dataset_viewer component
return gr.update(value=html_content), gr.update(choices=entry_options)
add_button.click(
update_all_components_after_add,
inputs=[current_dataset_name, datasets],
outputs=[dataset_viewer, entry_selector]
)
# Update all components when an entry is edited
def update_all_components_after_edit(current_dataset_name, datasets):
while current_dataset_name not in datasets:
time.sleep(0.1) # Wait until dataset is loaded
dataset = datasets[current_dataset_name]
html_content = display_dataset_html(dataset, page_number=0)
entry_options = [f"{idx}: {entry['prompt'][:30]}" for idx, entry in enumerate(dataset)]
dataset_viewer.update(value=html_content) # Update dataset_viewer component
return gr.update(value=html_content), gr.update(choices=entry_options)
edit_button.click(
update_all_components_after_edit,
inputs=[current_dataset_name, datasets],
outputs=[dataset_viewer, entry_selector]
)
# Update all components when an entry is deleted
def update_all_components_after_delete(current_dataset_name, datasets):
while current_dataset_name not in datasets:
time.sleep(0.1) # Wait until dataset is loaded
dataset = datasets[current_dataset_name]
html_content = display_dataset_html(dataset, page_number=0)
entry_options = [f"{idx}: {entry['prompt'][:30]}" for idx, entry in enumerate(dataset)]
dataset_viewer.update(value=html_content) # Update dataset_viewer component
return gr.update(value=html_content), gr.update(choices=entry_options)
delete_button.click(
update_all_components_after_delete,
inputs=[current_dataset_name, datasets],
outputs=[dataset_viewer, entry_selector]
)
demo.launch() |