File size: 17,938 Bytes
33e672b
79b274c
e377d5f
79b274c
33e672b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d64dc21
33e672b
 
 
 
 
d64dc21
33e672b
 
 
 
 
d64dc21
33e672b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d64dc21
33e672b
 
 
 
 
d64dc21
33e672b
 
 
 
 
 
 
 
 
 
d64dc21
33e672b
 
 
 
 
 
 
 
 
 
 
 
d64dc21
33e672b
 
 
 
 
d64dc21
33e672b
 
 
 
 
 
 
 
 
 
 
 
d64dc21
33e672b
 
 
 
 
d64dc21
33e672b
 
 
 
 
 
 
 
 
 
 
 
d64dc21
33e672b
 
 
 
 
7cf4a2b
33e672b
 
 
 
 
 
 
 
7cf4a2b
33e672b
 
 
 
 
 
7cf4a2b
33e672b
 
 
 
 
 
d64dc21
33e672b
 
 
d64dc21
33e672b
 
 
 
 
 
 
 
 
 
 
 
d64dc21
33e672b
 
 
 
 
f21bf1a
33e672b
 
 
 
 
 
 
f21bf1a
33e672b
 
 
 
 
248accb
 
 
 
 
 
 
 
 
33e672b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00039a6
33e672b
 
 
 
 
00039a6
33e672b
 
 
79ea3d6
33e672b
 
 
 
 
f21bf1a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394

import gradio as gr
import os
import zipfile
import json
from io import BytesIO
import base64
from PIL import Image
import uuid
import tempfile
import numpy as np

def save_dataset_to_zip(dataset_name, dataset):
    temp_dir = tempfile.mkdtemp()
    dataset_path = os.path.join(temp_dir, dataset_name)
    os.makedirs(dataset_path, exist_ok=True)
    images_dir = os.path.join(dataset_path, 'images')
    os.makedirs(images_dir, exist_ok=True)

    annotations = []
    for idx, entry in enumerate(dataset):
        image_data = entry['image']
        prompt = entry['prompt']

        # Save image to images directory
        image_filename = f"{uuid.uuid4().hex}.png"
        image_path = os.path.join(images_dir, image_filename)
        # Decode the base64 image data
        image = Image.open(BytesIO(base64.b64decode(image_data.split(",")[1])))
        image.save(image_path)

        # Add annotation
        annotations.append({
            'file_name': os.path.join('images', image_filename),
            'text': prompt
        })

    # Save annotations to JSONL file
    annotations_path = os.path.join(dataset_path, 'annotations.jsonl')
    with open(annotations_path, 'w') as f:
        for ann in annotations:
            f.write(json.dumps(ann) + '\n')

    # Create a zip file with the dataset_name as the top-level folder
    zip_buffer = BytesIO()
    with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zipf:
        for root, dirs, files in os.walk(dataset_path):
            for file in files:
                abs_file = os.path.join(root, file)
                rel_file = os.path.relpath(abs_file, temp_dir)
                zipf.write(abs_file, rel_file)

    zip_buffer.seek(0)
    return zip_buffer

def load_dataset_from_zip(zip_file_path):
    temp_dir = tempfile.mkdtemp()
    try:
        with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
            zip_ref.extractall(temp_dir)

        # Get dataset name from zip file name
        dataset_name_guess = os.path.splitext(os.path.basename(zip_file_path))[0]
        dataset_path = os.path.join(temp_dir, dataset_name_guess)

        if os.path.exists(dataset_path):
            dataset_name = dataset_name_guess
        else:
            # If the dataset_name directory doesn't exist, try to find the top-level directory
            entries = [entry for entry in os.listdir(temp_dir) if os.path.isdir(os.path.join(temp_dir, entry))]
            if entries:
                dataset_name = entries[0]
                dataset_path = os.path.join(temp_dir, dataset_name)
            else:
                # Files are directly in temp_dir
                dataset_name = dataset_name_guess
                dataset_path = temp_dir

        annotations_path = os.path.join(dataset_path, 'annotations.jsonl')
        dataset = []

        if os.path.exists(annotations_path):
            with open(annotations_path, 'r') as f:
                for line in f:
                    ann = json.loads(line)
                    file_name = ann['file_name']
                    prompt = ann['text']
                    image_path = os.path.join(dataset_path, file_name)

                    # Read image and convert to base64
                    with open(image_path, 'rb') as img_f:
                        image_bytes = img_f.read()
                        encoded = base64.b64encode(image_bytes).decode()
                        mime_type = "image/png"
                        image_data = f"data:{mime_type};base64,{encoded}"

                    dataset.append({
                        'image': image_data,
                        'prompt': prompt
                    })
        else:
            # If annotations file not found
            return None, []

        return dataset_name, dataset
    except Exception as e:
        print(f"Error loading dataset: {e}")
        return None, []

def display_dataset_html(dataset, page_number=0, items_per_page=2):
    if dataset:
        start_idx = page_number * items_per_page
        end_idx = start_idx + items_per_page
        dataset_slice = dataset[start_idx:end_idx]
        html_content = '''
        <div style="display: flex; overflow-x: auto; padding: 10px; border: 1px solid #ccc;">
        '''
        for idx_offset, entry in enumerate(dataset_slice):
            idx = start_idx + idx_offset
            image_data = entry['image']
            prompt = entry['prompt']
            html_content += f"""
            <div style="display: flex; flex-direction: column; align-items: center; margin-right: 20px;">
                <div style="margin-bottom: 5px;">{idx}</div>
                <img src="{image_data}" alt="Image {idx}" style="max-height: 150px;"/>
                <div style="max-width: 150px; word-wrap: break-word; text-align: center;">{prompt}</div>
            </div>
            """
        html_content += '</div>'
        return html_content
    else:
        return "<div>No entries in dataset.</div>"

#Interface
with gr.Blocks() as demo:
    gr.Markdown("<h1 style='text-align: center; margin-bottom: 1px;'>Dataset Creator</h1>")
    gr.Markdown("You must create/upload a dataset before selecting one")
    datasets = gr.State({})
    current_dataset_name = gr.State("")
    current_page_number = gr.State(0)

    # Top-level components
    with gr.Column():
        dataset_selector = gr.Dropdown(label="Select Dataset", interactive=True)
        message_box = gr.Textbox(interactive=False, label="Message")

    # Tabs
    with gr.Tabs():
        with gr.TabItem("Create / Upload Dataset"):
            with gr.Row():
                with gr.Column():
                    gr.Markdown("### Create a New Dataset")
                    dataset_name_input = gr.Textbox(label="New Dataset Name")
                    create_button = gr.Button("Create Dataset")
                with gr.Column():
                    gr.Markdown("### Upload Existing Dataset")
                    upload_input = gr.File(label="Upload Dataset Zip", type="filepath", file_types=['.zip'])
                    upload_button = gr.Button("Upload Dataset")

            def create_dataset(name, datasets):
                if not name:
                    return gr.update(), "Please enter a dataset name."
                if name in datasets:
                    return gr.update(), f"Dataset '{name}' already exists."
                datasets[name] = []
                return gr.update(choices=list(datasets.keys()), value=name), f"Dataset '{name}' created."

            create_button.click(
                create_dataset,
                inputs=[dataset_name_input, datasets],
                outputs=[dataset_selector, message_box]
            )

            def upload_dataset(zip_file_path, datasets):
                if not zip_file_path:
                    return gr.update(), "Please upload a zip file."
                dataset_name, dataset = load_dataset_from_zip(zip_file_path)
                if dataset_name is None:
                    return gr.update(), "Failed to load dataset from zip file."
                if dataset_name in datasets:
                    return gr.update(), f"Dataset '{dataset_name}' already exists."
                datasets[dataset_name] = dataset
                return gr.update(choices=list(datasets.keys()), value=dataset_name), f"Dataset '{dataset_name}' uploaded."

            upload_button.click(
                upload_dataset,
                inputs=[upload_input, datasets],
                outputs=[dataset_selector, message_box]
            )

        with gr.TabItem("Add Entry"):
            with gr.Row():
                image_input = gr.Image(label="Upload Image", type="numpy")
                prompt_input = gr.Textbox(label="Prompt")
            add_button = gr.Button("Add Entry")

            def add_entry(image_data, prompt, current_dataset_name, datasets):
                if not current_dataset_name:
                    return datasets, gr.update(), gr.update(), "No dataset selected."
                if image_data is None or not prompt:
                    return datasets, gr.update(), gr.update(), "Please provide both an image and a prompt."
                # Convert image_data to base64
                image = Image.fromarray(image_data.astype('uint8'))
                buffered = BytesIO()
                image.save(buffered, format="PNG")
                img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
                img_data = f"data:image/png;base64,{img_str}"
                datasets[current_dataset_name].append({'image': img_data, 'prompt': prompt})
                dataset = datasets[current_dataset_name]
                # Reset page number to 0 and refresh HTML
                page_number = 0
                dataset = datasets[current_dataset_name]
                html_content = display_dataset_html(dataset, page_number=page_number)
                return datasets, page_number, gr.update(value=html_content), f"Entry added to dataset '{current_dataset_name}'."

            add_button.click(
                add_entry,
                inputs=[image_input, prompt_input, current_dataset_name, datasets],
                outputs=[datasets, current_page_number, dataset_html, message_box]
            )

        with gr.TabItem("Edit / Delete Entry"):
            with gr.Column():
                selected_image = gr.Image(label="Selected Image", interactive=False, type="numpy")
                selected_prompt = gr.Textbox(label="Current Prompt", interactive=False)
                # Define entry_selector here
                entry_selector = gr.Dropdown(label="Select Entry to Edit/Delete")
                new_prompt_input = gr.Textbox(label="New Prompt (for Edit)")
                with gr.Row():
                    edit_button = gr.Button("Edit Entry")
                    delete_button = gr.Button("Delete Entry")

            def update_selected_entry(entry_option, current_dataset_name, datasets):
                if not current_dataset_name or not entry_option:
                    return gr.update(), gr.update()
                index = int(entry_option.split(":")[0])
                entry = datasets[current_dataset_name][index]
                image_data = entry['image']
                prompt = entry['prompt']
                # Decode base64 image data to numpy array
                image_bytes = base64.b64decode(image_data.split(",")[1])
                image = Image.open(BytesIO(image_bytes))
                image_array = np.array(image)
                return gr.update(value=image_array), gr.update(value=prompt)

            entry_selector.change(
                update_selected_entry,
                inputs=[entry_selector, current_dataset_name, datasets],
                outputs=[selected_image, selected_prompt]
            )

            def edit_entry(entry_option, new_prompt, current_dataset_name, datasets, current_page_number):
                if not current_dataset_name:
                    return datasets, gr.update(), gr.update(), gr.update(), f"No dataset selected."
                if not entry_option or not new_prompt.strip():
                    return datasets, gr.update(), gr.update(), gr.update(), f"Please select an entry and provide a new prompt."
                index = int(entry_option.split(":")[0])
                datasets[current_dataset_name][index]['prompt'] = new_prompt
                dataset = datasets[current_dataset_name]
                html_content = display_dataset_html(dataset, page_number=current_page_number)
                # Update entry_selector options
                entry_options = [f"{idx}: {entry['prompt'][:30]}" for idx, entry in enumerate(dataset)]
                return datasets, gr.update(value=html_content), gr.update(choices=entry_options), gr.update(value=""), f"Entry {index} updated."

            edit_button.click(
                edit_entry,
                inputs=[entry_selector, new_prompt_input, current_dataset_name, datasets, current_page_number],
                outputs=[datasets, dataset_html, entry_selector, new_prompt_input, message_box]
            )

            def delete_entry(entry_option, current_dataset_name, datasets, current_page_number):
                if not current_dataset_name:
                    return datasets, gr.update(), gr.update(), gr.update(), gr.update(), "No dataset selected."
                if not entry_option:
                    return datasets, gr.update(), gr.update(), gr.update(), gr.update(), "Please select an entry to delete."
                index = int(entry_option.split(":")[0])
                del datasets[current_dataset_name][index]
                dataset = datasets[current_dataset_name]
                html_content = display_dataset_html(dataset, page_number=current_page_number)
                # Update entry_selector options
                entry_options = [f"{idx}: {entry['prompt'][:30]}" for idx, entry in enumerate(dataset)]
                return datasets, gr.update(value=html_content), gr.update(choices=entry_options), gr.update(value=None), f"Entry {index} deleted."

            delete_button.click(
                delete_entry,
                inputs=[entry_selector, current_dataset_name, datasets, current_page_number],
                outputs=[datasets, dataset_html, entry_selector, selected_image, message_box]
            )

            # Function to update entry_selector options
            def update_entry_selector(current_dataset_name, datasets):
                if current_dataset_name in datasets:
                    dataset = datasets[current_dataset_name]
                    entry_options = [f"{idx}: {entry['prompt'][:30]}" for idx, entry in enumerate(dataset)]
                    return gr.update(choices=entry_options)
                else:
                    return gr.update(choices=[])

            # Update entry_selector when dataset is selected
            dataset_selector.change(
                update_entry_selector,
                inputs=[current_dataset_name, datasets],
                outputs=[entry_selector]
            )

            # Also update entry_selector when an entry is added in "Add Entry" tab
            add_button.click(
                update_entry_selector,
                inputs=[current_dataset_name, datasets],
                outputs=[entry_selector]
            )

        with gr.TabItem("Download Dataset"):
            download_button = gr.Button("Download Dataset")
            download_output = gr.File(label="Download Zip", interactive=False)

            def download_dataset(current_dataset_name, datasets):
                if not current_dataset_name:
                    return None, "No dataset selected."
                if not datasets[current_dataset_name]:
                    return None, "Dataset is empty."
                zip_buffer = save_dataset_to_zip(current_dataset_name, datasets[current_dataset_name])
                # Write zip_buffer to a temporary file
                temp_dir = tempfile.mkdtemp()
                zip_path = os.path.join(temp_dir, f"{current_dataset_name}.zip")
                with open(zip_path, 'wb') as f:
                    f.write(zip_buffer.getvalue())
                return zip_path, f"Dataset '{current_dataset_name}' is ready for download."

            download_button.click(
                download_dataset,
                inputs=[current_dataset_name, datasets],
                outputs=[download_output, message_box]
            )

    def select_dataset(dataset_name, datasets):
        if dataset_name in datasets:
            dataset = datasets[dataset_name]
            html_content = display_dataset_html(dataset, page_number=0)
            return dataset_name, 0, gr.update(value=html_content), f"Dataset '{dataset_name}' selected."
        else:
            return "", 0, gr.update(value="<div>Select a dataset.</div>"), ""

    dataset_selector.change(
        select_dataset,
        inputs=[dataset_selector, datasets],
        outputs=[current_dataset_name, current_page_number, dataset_html, message_box]
    )

    # Dataset Viewer and Pagination Controls at the Bottom
    with gr.Column():
        gr.Markdown("### Dataset Viewer")
        dataset_html = gr.HTML()
        with gr.Row():
            prev_button = gr.Button("Previous Page")
            next_button = gr.Button("Next Page")
    
    def change_page(action, current_page_number, datasets, current_dataset_name):
        if not current_dataset_name:
            return current_page_number, gr.update(), "No dataset selected."
        dataset = datasets[current_dataset_name]
        total_pages = (len(dataset) - 1) // 5 + 1
        if action == "next":
            if current_page_number + 1 < total_pages:
                current_page_number += 1
        elif action == "prev":
            if current_page_number > 0:
                current_page_number -= 1
        html_content = display_dataset_html(dataset, page_number=current_page_number)
        return current_page_number, gr.update(value=html_content), ""
    
    prev_button.click(
        fn=lambda current_page_number, datasets, current_dataset_name: change_page("prev", current_page_number, datasets, current_dataset_name),
        inputs=[current_page_number, datasets, current_dataset_name],
        outputs=[current_page_number, dataset_html, message_box]
    )

    next_button.click(
        fn=lambda current_page_number, datasets, current_dataset_name: change_page("next", current_page_number, datasets, current_dataset_name),
        inputs=[current_page_number, datasets, current_dataset_name],
        outputs=[current_page_number, dataset_html, message_box]
    )

    # Initialize dataset_selector
    def initialize_components(datasets):
        return gr.update(choices=list(datasets.keys()))

    demo.load(
        initialize_components,
        inputs=[datasets],
        outputs=[dataset_selector]
    )

demo.launch()