throaway2854's picture
Update app.py
12d82e5 verified
raw
history blame
21.5 kB
import gradio as gr
import os
import zipfile
import json
from io import BytesIO
import base64
from PIL import Image
import uuid
import tempfile
import numpy as np
import time
# Function to save dataset to zip
def save_dataset_to_zip(dataset_name, dataset):
temp_dir = tempfile.mkdtemp()
dataset_path = os.path.join(temp_dir, dataset_name)
os.makedirs(dataset_path, exist_ok=True)
images_dir = os.path.join(dataset_path, 'images')
os.makedirs(images_dir, exist_ok=True)
annotations = []
for idx, entry in enumerate(dataset):
image_data = entry['image']
prompt = entry['prompt']
# Save image to images directory
image_filename = f"{uuid.uuid4().hex}.png"
image_path = os.path.join(images_dir, image_filename)
# Decode the base64 image data
image = Image.open(BytesIO(base64.b64decode(image_data.split(",")[1])))
image.save(image_path)
# Add annotation
annotations.append({
'file_name': os.path.join('images', image_filename),
'text': prompt
})
# Save annotations to JSONL file
annotations_path = os.path.join(dataset_path, 'annotations.jsonl')
with open(annotations_path, 'w') as f:
for ann in annotations:
f.write(json.dumps(ann) + '\n')
# Create a zip file with the dataset_name as the top-level folder
zip_buffer = BytesIO()
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zipf:
for root, dirs, files in os.walk(dataset_path):
for file in files:
abs_file = os.path.join(root, file)
rel_file = os.path.relpath(abs_file, temp_dir)
zipf.write(abs_file, rel_file)
zip_buffer.seek(0)
return zip_buffer
# Function to load dataset from zip
def load_dataset_from_zip(zip_file_path):
temp_dir = tempfile.mkdtemp()
try:
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
zip_ref.extractall(temp_dir)
# Get dataset name from zip file name
dataset_name_guess = os.path.splitext(os.path.basename(zip_file_path))[0]
dataset_path = os.path.join(temp_dir, dataset_name_guess)
if os.path.exists(dataset_path):
dataset_name = dataset_name_guess
else:
# If the dataset_name directory doesn't exist, try to find the top-level directory
entries = [entry for entry in os.listdir(temp_dir) if os.path.isdir(os.path.join(temp_dir, entry))]
if entries:
dataset_name = entries[0]
dataset_path = os.path.join(temp_dir, dataset_name)
else:
# Files are directly in temp_dir
dataset_name = dataset_name_guess
dataset_path = temp_dir
annotations_path = os.path.join(dataset_path, 'annotations.jsonl')
dataset = []
if os.path.exists(annotations_path):
with open(annotations_path, 'r') as f:
for line in f:
ann = json.loads(line)
file_name = ann['file_name']
prompt = ann['text']
image_path = os.path.join(dataset_path, file_name)
# Read image and convert to base64
with open(image_path, 'rb') as img_f:
image_bytes = img_f.read()
encoded = base64.b64encode(image_bytes).decode()
mime_type = "image/png"
image_data = f"data:{mime_type};base64,{encoded}"
dataset.append({
'image': image_data,
'prompt': prompt
})
else:
# If annotations file not found
return None, []
return dataset_name, dataset
except Exception as e:
print(f"Error loading dataset: {e}")
return None, []
# Function to display dataset as HTML
def display_dataset_html(dataset, page_number=0, items_per_page=2):
if dataset:
start_idx = page_number * items_per_page
end_idx = start_idx + items_per_page
dataset_slice = dataset[start_idx:end_idx]
html_content = '''
<div style="display: flex; overflow-x: auto; padding: 10px; border: 1px solid #ccc;">'''
for idx_offset, entry in enumerate(dataset_slice):
idx = start_idx + idx_offset
image_data = entry['image']
prompt = entry['prompt']
# Decode base64 image data to numpy array
image_bytes = base64.b64decode(image_data.split(",")[1])
image = Image.open(BytesIO(image_bytes))
# Compress image
image.thumbnail((100, 100)) # Resize image to 100x100 pixels
buffered = BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
img_data = f"data:image/png;base64,{img_str}"
html_content += f"""
<div style="display: flex; flex-direction: column; align-items: center; margin-right: 20px;">'''
<div style="margin-bottom: 5px;">{idx}</div>
<img src="{img_data}" alt="Image {idx}" style="max-height: 150px;"/>
<div style="max-width: 150px; word-wrap: break-word; text-align: center;">{prompt}</div>
</div>
"""
html_content += '</div>'
return html_content
else:
return "<div>No entries in dataset.</div>"
# Interface
with gr.Blocks() as demo:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1px;'>Dataset Creator</h1>")
gr.Markdown("You must create/upload a dataset before selecting one")
datasets = gr.State({})
current_dataset_name = gr.State("")
current_page_number = gr.State(0)
dataset_html = gr.HTML() # Define dataset_html here
# Top-level components
with gr.Column():
dataset_selector = gr.Dropdown(label="Select Dataset", interactive=True)
message_box = gr.Textbox(interactive=False, label="Message")
# Tabs
with gr.Tabs():
with gr.TabItem("Create / Upload Dataset"):
with gr.Row():
with gr.Column():
gr.Markdown("### Create a New Dataset")
dataset_name_input = gr.Textbox(label="New Dataset Name")
create_button = gr.Button("Create Dataset")
with gr.Column():
gr.Markdown("### Upload Existing Dataset")
upload_input = gr.File(label="Upload Dataset Zip", type="filepath", file_types=['.zip'])
upload_button = gr.Button("Upload Dataset")
def create_dataset(name, datasets):
if not name:
return gr.update(), "Please enter a dataset name."
if name in datasets:
return gr.update(), f"Dataset '{name}' already exists."
datasets[name] = []
return gr.update(choices=list(datasets.keys()), value=name), f"Dataset '{name}' created."
create_button.click(
create_dataset,
inputs=[dataset_name_input, datasets],
outputs=[dataset_selector, message_box]
)
def upload_dataset(zip_file_path, datasets):
if not zip_file_path:
return gr.update(), "Please upload a zip file."
dataset_name, dataset = load_dataset_from_zip(zip_file_path)
if dataset_name is None:
return gr.update(), "Failed to load dataset from zip file."
if dataset_name in datasets:
return gr.update(), f"Dataset '{dataset_name}' already exists."
datasets[dataset_name] = dataset
return gr.update(choices=list(datasets.keys()), value=dataset_name), f"Dataset '{dataset_name}' uploaded."
upload_button.click(
upload_dataset,
inputs=[upload_input, datasets],
outputs=[dataset_selector, message_box]
)
with gr.TabItem("Add Entry"):
with gr.Row():
image_input = gr.Image(label="Upload Image", type="numpy")
prompt_input = gr.Textbox(label="Prompt")
add_button = gr.Button("Add Entry")
def add_entry(image_data, prompt, current_dataset_name, datasets):
if not current_dataset_name:
return datasets, gr.update(), gr.update(), "No dataset selected."
if image_data is None or not prompt:
return datasets, gr.update(), gr.update(), "Please provide both an image and a prompt."
# Convert image_data to base64
image = Image.fromarray(image_data.astype('uint8'))
buffered = BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
img_data = f"data:image/png;base64,{img_str}"
datasets[current_dataset_name].append({'image': img_data, 'prompt': prompt})
dataset = datasets[current_dataset_name]
# Reset page number to 0 and refresh HTML
page_number = 0
dataset = datasets[current_dataset_name]
html_content = display_dataset_html(dataset, page_number=page_number)
return datasets, page_number, gr.update(value=html_content), f"Entry added to dataset '{current_dataset_name}'."
add_button.click(
add_entry,
inputs=[image_input, prompt_input, current_dataset_name, datasets],
outputs=[datasets, current_page_number, dataset_html, message_box]
)
with gr.TabItem("Edit / Delete Entry"):
with gr.Column():
selected_image = gr.Image(label="Selected Image", interactive=False, type="numpy")
selected_prompt = gr.Textbox(label="Current Prompt", interactive=False)
# Define entry_selector here
entry_selector = gr.Dropdown(label="Select Entry to Edit/Delete")
new_prompt_input = gr.Textbox(label="New Prompt (for Edit)")
with gr.Row():
edit_button = gr.Button("Edit Entry")
delete_button = gr.Button("Delete Entry")
def update_selected_entry(entry_option, current_dataset_name, datasets):
if not current_dataset_name or not entry_option:
return gr.update(), gr.update()
index = int(entry_option.split(":")[0])
entry = datasets[current_dataset_name][index]
image_data = entry['image']
prompt = entry['prompt']
# Decode base64 image data to numpy array
image_bytes = base64.b64decode(image_data.split(",")[1])
image = Image.open(BytesIO(image_bytes))
image_array = np.array(image)
return gr.update(value=image_array), gr.update(value=prompt)
entry_selector.change(
update_selected_entry,
inputs=[entry_selector, current_dataset_name, datasets],
outputs=[selected_image, selected_prompt]
)
def edit_entry(entry_option, new_prompt, current_dataset_name, datasets, current_page_number):
if not current_dataset_name:
return datasets, gr.update(), gr.update(), gr.update(), f"No dataset selected."
if not entry_option or not new_prompt.strip():
return datasets, gr.update(), gr.update(), gr.update(), f"Please select an entry and provide a new prompt."
index = int(entry_option.split(":")[0])
datasets[current_dataset_name][index]['prompt'] = new_prompt
dataset = datasets[current_dataset_name]
html_content = display_dataset_html(dataset, page_number=current_page_number)
# Update entry_selector options
entry_options = [f"{idx}: {entry['prompt'][:30]}" for idx, entry in enumerate(dataset)]
return datasets, gr.update(value=html_content), gr.update(choices=entry_options), gr.update(value=""), f"Entry {index} updated."
edit_button.click(
edit_entry,
inputs=[entry_selector, new_prompt_input, current_dataset_name, datasets, current_page_number],
outputs=[datasets, dataset_html, entry_selector, new_prompt_input, message_box]
)
def delete_entry(entry_option, current_dataset_name, datasets, current_page_number):
if not current_dataset_name:
return datasets, gr.update(), gr.update(), gr.update(), gr.update(), "No dataset selected."
if not entry_option:
return datasets, gr.update(), gr.update(), gr.update(), gr.update(), "Please select an entry to delete."
index = int(entry_option.split(":")[0])
del datasets[current_dataset_name][index]
dataset = datasets[current_dataset_name]
html_content = display_dataset_html(dataset, page_number=current_page_number)
# Update entry_selector options
entry_options = [f"{idx}: {entry['prompt'][:30]}" for idx, entry in enumerate(dataset)]
return datasets, gr.update(value=html_content), gr.update(choices=entry_options), gr.update(value=None), f"Entry {index} deleted."
delete_button.click(
delete_entry,
inputs=[entry_selector, current_dataset_name, datasets, current_page_number],
outputs=[datasets, dataset_html, entry_selector, selected_image, message_box]
)
# Function to update entry_selector options
def update_entry_selector(current_dataset_name, datasets):
if current_dataset_name in datasets:
dataset = datasets[current_dataset_name]
entry_options = [f"{idx}: {entry['prompt'][:30]}" for idx, entry in enumerate(dataset)]
return gr.update(choices=entry_options)
else:
return gr.update(choices=[])
# Update entry_selector when dataset is selected
dataset_selector.change(
update_entry_selector,
inputs=[current_dataset_name, datasets],
outputs=[entry_selector]
)
# Also update entry_selector when an entry is added in "Add Entry" tab
add_button.click(
update_entry_selector,
inputs=[current_dataset_name, datasets],
outputs=[entry_selector]
)
with gr.TabItem("Download Dataset"):
download_button = gr.Button("Download Dataset")
download_output = gr.File(label="Download Zip", interactive=False)
def download_dataset(current_dataset_name, datasets):
if not current_dataset_name:
return None, "No dataset selected."
if not datasets[current_dataset_name]:
return None, "Dataset is empty."
zip_buffer = save_dataset_to_zip(current_dataset_name, datasets[current_dataset_name])
# Write zip_buffer to a temporary file
temp_dir = tempfile.mkdtemp()
zip_path = os.path.join(temp_dir, f"{current_dataset_name}.zip")
with open(zip_path, 'wb') as f:
f.write(zip_buffer.getvalue())
return zip_path, f"Dataset '{current_dataset_name}' is ready for download."
download_button.click(
download_dataset,
inputs=[current_dataset_name, datasets],
outputs=[download_output, message_box]
)
def select_dataset(dataset_name, datasets):
if dataset_name in datasets:
dataset = datasets[dataset_name]
html_content = display_dataset_html(dataset, page_number=0)
return dataset_name, 0, gr.update(value=html_content), f"Dataset '{dataset_name}' selected."
else:
return "", 0, gr.update(value="<div>Select a dataset.</div>"), ""
dataset_selector.change(
select_dataset,
inputs=[dataset_selector, datasets],
outputs=[current_dataset_name, current_page_number, dataset_html, message_box]
)
# Dataset Viewer and Pagination Controls at the Bottom
with gr.Column():
gr.Markdown("### Dataset Viewer")
dataset_viewer = gr.HTML() # Use dataset_viewer instead of dataset_html
with gr.Row():
prev_button = gr.Button("Previous Page")
next_button = gr.Button("Next Page")
def change_page(action, current_page_number, datasets, current_dataset_name):
if not current_dataset_name:
return current_page_number, gr.update(), "No dataset selected."
dataset = datasets[current_dataset_name]
total_pages = (len(dataset) - 1) // 5 + 1
if action == "next":
if current_page_number + 1 < total_pages:
current_page_number += 1
elif action == "prev":
if current_page_number > 0:
current_page_number -= 1
html_content = display_dataset_html(dataset, page_number=current_page_number)
return current_page_number, gr.update(value=html_content), ""
prev_button.click(
fn=lambda current_page_number, datasets, current_dataset_name: change_page("prev", current_page_number, datasets, current_dataset_name),
inputs=[current_page_number, datasets, current_dataset_name],
outputs=[current_page_number, dataset_viewer, message_box]
)
next_button.click(
fn=lambda current_page_number, datasets, current_dataset_name: change_page("next", current_page_number, datasets, current_dataset_name),
inputs=[current_page_number, datasets, current_dataset_name],
outputs=[current_page_number, dataset_viewer, message_box]
)
# Initialize dataset_selector
def initialize_components(datasets):
return gr.update(choices=list(datasets.keys()))
demo.load(
initialize_components,
inputs=[datasets],
outputs=[dataset_selector]
)
# Hide dataset_html
dataset_html.visible = False
# Update all components when a dataset is selected
def update_all_components(current_dataset_name, datasets):
while current_dataset_name not in datasets:
time.sleep(0.1) # Wait until dataset is loaded
dataset = datasets[current_dataset_name]
html_content = display_dataset_html(dataset, page_number=0)
entry_options = [f"{idx}: {entry['prompt'][:30]}" for idx, entry in enumerate(dataset)]
return gr.update(value=html_content), gr.update(choices=entry_options)
dataset_selector.change(
update_all_components,
inputs=[current_dataset_name, datasets],
outputs=[dataset_viewer, entry_selector]
)
# Update all components when an entry is added
def update_all_components_after_add(current_dataset_name, datasets):
while current_dataset_name not in datasets:
time.sleep(0.1) # Wait until dataset is loaded
dataset = datasets[current_dataset_name]
html_content = display_dataset_html(dataset, page_number=0)
entry_options = [f"{idx}: {entry['prompt'][:30]}" for idx, entry in enumerate(dataset)]
return gr.update(value=html_content), gr.update(choices=entry_options)
add_button.click(
update_all_components_after_add,
inputs=[current_dataset_name, datasets],
outputs=[dataset_viewer, entry_selector]
)
# Update all components when an entry is edited
def update_all_components_after_edit(current_dataset_name, datasets):
while current_dataset_name not in datasets:
time.sleep(0.1) # Wait until dataset is loaded
dataset = datasets[current_dataset_name]
html_content = display_dataset_html(dataset, page_number=0)
entry_options = [f"{idx}: {entry['prompt'][:30]}" for idx, entry in enumerate(dataset)]
return gr.update(value=html_content), gr.update(choices=entry_options)
edit_button.click(
update_all_components_after_edit,
inputs=[current_dataset_name, datasets],
outputs=[dataset_viewer, entry_selector]
)
# Update all components when an entry is deleted
def update_all_components_after_delete(current_dataset_name, datasets):
while current_dataset_name not in datasets:
time.sleep(0.1) # Wait until dataset is loaded
dataset = datasets[current_dataset_name]
html_content = display_dataset_html(dataset, page_number=0)
entry_options = [f"{idx}: {entry['prompt'][:30]}" for idx, entry in enumerate(dataset)]
return gr.update(value=html_content), gr.update(choices=entry_options)
delete_button.click(
update_all_components_after_delete,
inputs=[current_dataset_name, datasets],
outputs=[dataset_viewer, entry_selector]
)
demo.launch()