hzhwcmhf commited on
Commit
85cdb55
·
1 Parent(s): fa6fb41
Files changed (1) hide show
  1. app.py +3 -2
app.py CHANGED
@@ -14,6 +14,9 @@ import numpy as np
14
  import matplotlib.pyplot as plt
15
  import fairseq
16
 
 
 
 
17
 
18
  fairseq_path = os.path.dirname(os.path.dirname(fairseq.__file__))
19
 
@@ -24,8 +27,6 @@ sys.path.insert(1, f"{fairseq_path}/examples")
24
  from mass.s2s_model import TransformerMASSModel
25
  from transformer.hub_interface import TransformerHubInterface
26
 
27
- logger = logging.getLogger(__name__)
28
-
29
  notice_markdown = ("""
30
  # Directed Acyclic Transformer: A Non-Autoregressive Sequence-to-Sequence Model designed for Parallel Text Generation.
31
  - **Fast Generation**: DA-Transformer offers faster inference compared to autoregressive Transformers (with fairseq implementation), with a reduction in latency by 7~14x and an increase in throughput by ~20x.
 
14
  import matplotlib.pyplot as plt
15
  import fairseq
16
 
17
+ logger = logging.getLogger(__name__)
18
+ logger.info("start init")
19
+
20
 
21
  fairseq_path = os.path.dirname(os.path.dirname(fairseq.__file__))
22
 
 
27
  from mass.s2s_model import TransformerMASSModel
28
  from transformer.hub_interface import TransformerHubInterface
29
 
 
 
30
  notice_markdown = ("""
31
  # Directed Acyclic Transformer: A Non-Autoregressive Sequence-to-Sequence Model designed for Parallel Text Generation.
32
  - **Fast Generation**: DA-Transformer offers faster inference compared to autoregressive Transformers (with fairseq implementation), with a reduction in latency by 7~14x and an increase in throughput by ~20x.