Spaces:
Running
Running
import gradio as gr | |
import cv2 | |
import numpy as np | |
import tensorflow as tf | |
from facenet_pytorch import MTCNN | |
from PIL import Image | |
import moviepy.editor as mp | |
import os | |
import zipfile | |
# Load face detector | |
mtcnn = MTCNN(margin=14, keep_all=True, factor=0.7, device='cpu') | |
# Face Detection function | |
class DetectionPipeline: | |
def __init__(self, detector, n_frames=None, batch_size=60, resize=None): | |
self.detector = detector | |
self.n_frames = n_frames | |
self.batch_size = batch_size | |
self.resize = resize | |
def __call__(self, filename): | |
v_cap = cv2.VideoCapture(filename) | |
v_len = int(v_cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
if self.n_frames is None: | |
sample = np.arange(0, v_len) | |
else: | |
sample = np.linspace(0, v_len - 1, self.n_frames).astype(int) | |
faces = [] | |
frames = [] | |
dummy_data = np.zeros((224, 224, 3), dtype=np.uint8) | |
face2 = dummy_data | |
for j in range(v_len): | |
success = v_cap.grab() | |
if j in sample: | |
success, frame = v_cap.retrieve() | |
if not success: | |
continue | |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
if self.resize is not None: | |
frame = cv2.resize(frame, (int(frame.shape[1] * self.resize), int(frame.shape[0] * self.resize))) | |
frames.append(frame) | |
if len(frames) % self.batch_size == 0 or j == sample[-1]: | |
boxes, _ = self.detector.detect(frames) | |
for i in range(len(frames)): | |
if boxes[i] is None: | |
faces.append(face2) | |
continue | |
box = boxes[i][0].astype(int) | |
frame = frames[i] | |
face = frame[box[1]:box[3], box[0]:box[2]] | |
if not face.any(): | |
faces.append(face2) | |
continue | |
face2 = cv2.resize(face, (224, 224)) | |
faces.append(face2) | |
frames = [] | |
v_cap.release() | |
return faces | |
detection_pipeline = DetectionPipeline(detector=mtcnn, n_frames=20, batch_size=60) | |
model = tf.saved_model.load("p1") | |
def deepfakespredict(input_video): | |
faces = detection_pipeline(input_video) | |
total = 0 | |
real = 0 | |
fake = 0 | |
for face in faces: | |
face2 = (face / 255).astype(np.float32) | |
pred = model(np.expand_dims(face2, axis=0))[0] | |
total += 1 | |
pred2 = pred[1] | |
if pred2 > 0.5: | |
fake += 1 | |
else: | |
real += 1 | |
fake_ratio = fake / total | |
text = "" | |
text2 = "Deepfakes Confidence: " + str(fake_ratio * 100) + "%" | |
if fake_ratio >= 0.5: | |
text = "The video is FAKE." | |
else: | |
text = "The video is REAL." | |
face_frames = [] | |
for face in faces: | |
face_frame = Image.fromarray(face.astype('uint8'), 'RGB') | |
face_frames.append(face_frame) | |
face_frames[0].save('results.gif', save_all=True, append_images=face_frames[1:], duration=250, loop=100) | |
clip = mp.VideoFileClip("results.gif") | |
clip.write_videofile("video.mp4") | |
return text, text2, "video.mp4" | |
title = "Group 2- EfficientNetB2 based Deepfake Video Detector" | |
description = '''Please upload videos responsibly and await the results in a gif. The approach in place includes breaking down the video into several frames followed by collecting | |
the frames that contain a face. Once these frames are collected the trained model attempts to predict if the face is fake or real and contribute to a deepfake confidence. This confidence level eventually | |
determines if the video can be considered a fake or not.''' | |
gr.Interface(deepfakespredict, | |
inputs=["video"], | |
outputs=["text", "text", gr.Video(label="Detected face sequence")], | |
title=title, | |
description=description | |
).launch() | |