tight-inversion
Make sure seed is in valid range
fb46df5
import importlib
import math
import os
import random
import cv2
import numpy as np
import torch
import torch.nn.functional as F
import torchsde
from torchvision.utils import make_grid
from tqdm.auto import trange
from transformers import PretrainedConfig
def seed_everything(seed):
seed = int(seed) % (2**32) # Ensure seed is in the valid range
os.environ["PL_GLOBAL_SEED"] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def is_torch2_available():
return hasattr(F, "scaled_dot_product_attention")
def instantiate_from_config(config):
if "target" not in config:
if config == '__is_first_stage__' or config == "__is_unconditional__":
return None
raise KeyError("Expected key `target` to instantiate.")
return get_obj_from_str(config["target"])(**config.get("params", {}))
def get_obj_from_str(string, reload=False):
module, cls = string.rsplit(".", 1)
if reload:
module_imp = importlib.import_module(module)
importlib.reload(module_imp)
return getattr(importlib.import_module(module, package=None), cls)
def drop_seq_token(seq, drop_rate=0.5):
idx = torch.randperm(seq.size(1))
num_keep_tokens = int(len(idx) * (1 - drop_rate))
idx = idx[:num_keep_tokens]
seq = seq[:, idx]
return seq
def import_model_class_from_model_name_or_path(
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"
):
text_encoder_config = PretrainedConfig.from_pretrained(
pretrained_model_name_or_path, subfolder=subfolder, revision=revision
)
model_class = text_encoder_config.architectures[0]
if model_class == "CLIPTextModel":
from transformers import CLIPTextModel
return CLIPTextModel
elif model_class == "CLIPTextModelWithProjection": # noqa RET505
from transformers import CLIPTextModelWithProjection
return CLIPTextModelWithProjection
else:
raise ValueError(f"{model_class} is not supported.")
def resize_numpy_image_long(image, resize_long_edge=768):
h, w = image.shape[:2]
if max(h, w) <= resize_long_edge:
return image
k = resize_long_edge / max(h, w)
h = int(h * k)
w = int(w * k)
image = cv2.resize(image, (w, h), interpolation=cv2.INTER_LANCZOS4)
return image
# from basicsr
def img2tensor(imgs, bgr2rgb=True, float32=True):
"""Numpy array to tensor.
Args:
imgs (list[ndarray] | ndarray): Input images.
bgr2rgb (bool): Whether to change bgr to rgb.
float32 (bool): Whether to change to float32.
Returns:
list[tensor] | tensor: Tensor images. If returned results only have
one element, just return tensor.
"""
def _totensor(img, bgr2rgb, float32):
if img.shape[2] == 3 and bgr2rgb:
if img.dtype == 'float64':
img = img.astype('float32')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = torch.from_numpy(img.transpose(2, 0, 1))
if float32:
img = img.float()
return img
if isinstance(imgs, list):
return [_totensor(img, bgr2rgb, float32) for img in imgs]
return _totensor(imgs, bgr2rgb, float32)
def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)):
"""Convert torch Tensors into image numpy arrays.
After clamping to [min, max], values will be normalized to [0, 1].
Args:
tensor (Tensor or list[Tensor]): Accept shapes:
1) 4D mini-batch Tensor of shape (B x 3/1 x H x W);
2) 3D Tensor of shape (3/1 x H x W);
3) 2D Tensor of shape (H x W).
Tensor channel should be in RGB order.
rgb2bgr (bool): Whether to change rgb to bgr.
out_type (numpy type): output types. If ``np.uint8``, transform outputs
to uint8 type with range [0, 255]; otherwise, float type with
range [0, 1]. Default: ``np.uint8``.
min_max (tuple[int]): min and max values for clamp.
Returns:
(Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of
shape (H x W). The channel order is BGR.
"""
if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))):
raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}')
if torch.is_tensor(tensor):
tensor = [tensor]
result = []
for _tensor in tensor:
_tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max)
_tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0])
n_dim = _tensor.dim()
if n_dim == 4:
img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy()
img_np = img_np.transpose(1, 2, 0)
if rgb2bgr:
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
elif n_dim == 3:
img_np = _tensor.numpy()
img_np = img_np.transpose(1, 2, 0)
if img_np.shape[2] == 1: # gray image
img_np = np.squeeze(img_np, axis=2)
else:
if rgb2bgr:
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
elif n_dim == 2:
img_np = _tensor.numpy()
else:
raise TypeError(f'Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}')
if out_type == np.uint8:
# Unlike MATLAB, numpy.unit8() WILL NOT round by default.
img_np = (img_np * 255.0).round()
img_np = img_np.astype(out_type)
result.append(img_np)
if len(result) == 1:
result = result[0]
return result
# We didn't find a correct configuration to make the diffusers scheduler align with dpm++2m (karras) in ComfyUI,
# so we copied the ComfyUI code directly.
def append_dims(x, target_dims):
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
dims_to_append = target_dims - x.ndim
if dims_to_append < 0:
raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
expanded = x[(...,) + (None,) * dims_to_append]
# MPS will get inf values if it tries to index into the new axes, but detaching fixes this.
# https://github.com/pytorch/pytorch/issues/84364
return expanded.detach().clone() if expanded.device.type == 'mps' else expanded
def to_d(x, sigma, denoised):
"""Converts a denoiser output to a Karras ODE derivative."""
return (x - denoised) / append_dims(sigma, x.ndim)
def get_ancestral_step(sigma_from, sigma_to, eta=1.0):
"""Calculates the noise level (sigma_down) to step down to and the amount
of noise to add (sigma_up) when doing an ancestral sampling step."""
if not eta:
return sigma_to, 0.0
sigma_up = min(sigma_to, eta * (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5)
sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
return sigma_down, sigma_up
class BatchedBrownianTree:
"""A wrapper around torchsde.BrownianTree that enables batches of entropy."""
def __init__(self, x, t0, t1, seed=None, **kwargs):
self.cpu_tree = True
if "cpu" in kwargs:
self.cpu_tree = kwargs.pop("cpu")
t0, t1, self.sign = self.sort(t0, t1)
w0 = kwargs.get('w0', torch.zeros_like(x))
if seed is None:
seed = torch.randint(0, 2**63 - 1, []).item()
self.batched = True
try:
assert len(seed) == x.shape[0]
w0 = w0[0]
except TypeError:
seed = [seed]
self.batched = False
if self.cpu_tree:
self.trees = [torchsde.BrownianTree(t0.cpu(), w0.cpu(), t1.cpu(), entropy=s, **kwargs) for s in seed]
else:
self.trees = [torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs) for s in seed]
@staticmethod
def sort(a, b):
return (a, b, 1) if a < b else (b, a, -1)
def __call__(self, t0, t1):
t0, t1, sign = self.sort(t0, t1)
if self.cpu_tree:
w = torch.stack(
[tree(t0.cpu().float(), t1.cpu().float()).to(t0.dtype).to(t0.device) for tree in self.trees]
) * (self.sign * sign)
else:
w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign)
return w if self.batched else w[0]
class BrownianTreeNoiseSampler:
"""A noise sampler backed by a torchsde.BrownianTree.
Args:
x (Tensor): The tensor whose shape, device and dtype to use to generate
random samples.
sigma_min (float): The low end of the valid interval.
sigma_max (float): The high end of the valid interval.
seed (int or List[int]): The random seed. If a list of seeds is
supplied instead of a single integer, then the noise sampler will
use one BrownianTree per batch item, each with its own seed.
transform (callable): A function that maps sigma to the sampler's
internal timestep.
"""
def __init__(self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x, cpu=False):
self.transform = transform
t0, t1 = self.transform(torch.as_tensor(sigma_min)), self.transform(torch.as_tensor(sigma_max))
self.tree = BatchedBrownianTree(x, t0, t1, seed, cpu=cpu)
def __call__(self, sigma, sigma_next):
t0, t1 = self.transform(torch.as_tensor(sigma)), self.transform(torch.as_tensor(sigma_next))
return self.tree(t0, t1) / (t1 - t0).abs().sqrt()
@torch.no_grad()
def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, disable=None):
"""DPM-Solver++(2M)."""
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
sigma_fn = lambda t: t.neg().exp()
t_fn = lambda sigma: sigma.log().neg()
old_denoised = None
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
h = t_next - t
if old_denoised is None or sigmas[i + 1] == 0:
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised
else:
h_last = t - t_fn(sigmas[i - 1])
r = h_last / h
denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d
old_denoised = denoised
return x
@torch.no_grad()
def sample_dpmpp_sde(
model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1.0, s_noise=1.0, noise_sampler=None, r=1 / 2
):
"""DPM-Solver++ (stochastic)."""
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
seed = extra_args.get("seed", None)
noise_sampler = (
BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=False)
if noise_sampler is None
else noise_sampler
)
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
sigma_fn = lambda t: t.neg().exp()
t_fn = lambda sigma: sigma.log().neg()
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if sigmas[i + 1] == 0:
# Euler method
d = to_d(x, sigmas[i], denoised)
dt = sigmas[i + 1] - sigmas[i]
x = x + d * dt
else:
# DPM-Solver++
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
h = t_next - t
s = t + h * r
fac = 1 / (2 * r)
# Step 1
sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(s), eta)
s_ = t_fn(sd)
x_2 = (sigma_fn(s_) / sigma_fn(t)) * x - (t - s_).expm1() * denoised
x_2 = x_2 + noise_sampler(sigma_fn(t), sigma_fn(s)) * s_noise * su
denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
# Step 2
sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(t_next), eta)
t_next_ = t_fn(sd)
denoised_d = (1 - fac) * denoised + fac * denoised_2
x = (sigma_fn(t_next_) / sigma_fn(t)) * x - (t - t_next_).expm1() * denoised_d
x = x + noise_sampler(sigma_fn(t), sigma_fn(t_next)) * s_noise * su
return x