File size: 4,702 Bytes
00cfe59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import subprocess
import sys
import shlex
import spaces
import torch
import uuid
import os
import json
from pathlib import Path
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread


# install packages for mamba
def install_mamba():
    subprocess.run(shlex.split("pip install https://github.com/Dao-AILab/causal-conv1d/releases/download/v1.4.0/causal_conv1d-1.4.0+cu122torch2.3cxx11abiFALSE-cp310-cp310-linux_x86_64.whl"))
    subprocess.run(shlex.split("pip install https://github.com/state-spaces/mamba/releases/download/v2.2.2/mamba_ssm-2.2.2+cu122torch2.3cxx11abiFALSE-cp310-cp310-linux_x86_64.whl"))

install_mamba()

MODEL = "tiiuae/Falcon3-Mamba-7B-Instruct"

TITLE = "<h1><center>Falcon3-Mamba-7B-Instruct playground</center></h1>"

SUB_TITLE = """<center>Playground of Falcon3-Mamba-7B-Instruct</center>"""
SYSTEM_PROMPT = os.getenv('SYSTEM_PROMPT')

CSS = """
.duplicate-button {
    margin: auto !important;
    color: white !important;
    background: black !important;
    border-radius: 100vh !important;
}
h3 {
    text-align: center;
/* Fix for chat container */
.chat-container {
    height: 600px !important;
    overflow-y: auto !important;
    flex-direction: column !important;
}
.messages-container {
    flex-grow: 1 !important;
    overflow-y: auto !important;
    padding-right: 10px !important;
}
/* Ensure consistent height */
.contain {
    height: 100% !important;
}
"""

END_MESSAGE = """
\n
**The conversation has reached to its end, please press "Clear" to restart a new conversation**
"""

device = "cuda" # for GPU usage or "cpu" for CPU usage

tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForCausalLM.from_pretrained(
    MODEL,
    torch_dtype=torch.bfloat16,
).to(device)

if device == "cuda":
    model = torch.compile(model)

@spaces.GPU
def stream_chat(
    message: str, 
    history: list, 
    temperature: float = 0.3, 
    max_new_tokens: int = 100, 
    top_p: float = 1.0, 
    top_k: int = 20, 
    penalty: float = 1.2,
):
    print(f'message: {message}')
    print(f'history: {history}')

    conversation = []
    for prompt, answer in history:
        conversation.extend([
            {"role": 'system', "content": SYSTEM_PROMPT },
            {"role": "user", "content": prompt}, 
            {"role": "assistant", "content": answer},
        ])

    conversation.append({"role": "user", "content": message})
    
    input_text = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
    inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
    streamer = TextIteratorStreamer(tokenizer, timeout=40.0, skip_prompt=True, skip_special_tokens=True)
    
    generate_kwargs = dict(
        input_ids=inputs, 
        max_new_tokens=max_new_tokens,
        do_sample=False if temperature == 0 else True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        streamer=streamer,
        pad_token_id=11,
    )

    with torch.no_grad():
        thread = Thread(target=model.generate, kwargs=generate_kwargs)
        thread.start()
        
    buffer = ""
    for new_text in streamer:
        buffer += new_text
        buffer = buffer.replace("\nUser", "")
        buffer = buffer.replace("\nSystem", "")
        yield buffer

    print(f'response: {buffer}')
            
with gr.Blocks(css=CSS, theme="soft") as demo:
    gr.HTML(TITLE)
    gr.HTML(SUB_TITLE)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
    
    chat_interface = gr.ChatInterface(
        fn=stream_chat,
        chatbot=gr.Chatbot(
            height=600,
            container=True,
            elem_classes=["chat-container"]
        ),
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Slider(minimum=0, maximum=1, step=0.1, value=0.3, label="Temperature", render=False),
            gr.Slider(minimum=128, maximum=32768, step=1, value=1024, label="Max new tokens", render=False),
            gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="top_p", render=False),
            gr.Slider(minimum=1, maximum=20, step=1, value=20, label="top_k", render=False),
            gr.Slider(minimum=0.0, maximum=2.0, step=0.1, value=1.2, label="Repetition penalty", render=False),
        ],
        examples=[
            ["Hello there, can you suggest few places to visit in UAE?"],
            ["What UAE is known for?"],
        ],
        cache_examples=False,
    )

if __name__ == "__main__":
    demo.launch()