import os import torch from threading import Thread from typing import List, Optional, Tuple, Dict import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer import spaces from pathlib import Path from huggingface_hub import CommitScheduler import uuid import json # Constants SYSTEM_PROMPT = """You are a helpful friendly assistant Falcon3 from TII, try to follow instructions as much as possible. Be accurate and brief. The Technology Innovation Institute (TII) is a leading global research center dedicated to pushing the frontiers of knowledge. Our teams of scientists, researchers and engineers work in an open, flexible and agile environment to deliver discovery science and transformative technologies.\nWe are part of the Abu Dhabi Government's Advanced Technology Research Council (ATRC), which oversees technology research in the emirate.""" device = "cuda" if torch.cuda.is_available() else "cpu" TITLE = "

Falcon3 Instruct Playground

" SUB_TITLE = "

Try out also our demo powered by OpenInnovation AI

" # Custom CSS with dark theme CSS = """ .duplicate-button { margin: auto !important; color: white !important; background: black !important; border-radius: 100vh !important; } h3 { text-align: center; /* Fix for chat container */ .chat-container { height: 500px !important; overflow-y: auto !important; flex-direction: column !important; } .messages-container { flex-grow: 1 !important; overflow-y: auto !important; padding-right: 10px !important; } .contain { height: 100% !important; } .model-selector { margin: 1em auto !important; max-width: 500px !important; background: #1f2937 !important; padding: 1em !important; border-radius: 8px !important; } /* Style for radio group container */ .radio-group { background: #1f2937 !important; padding: 1em !important; border-radius: 8px !important; gap: 10px !important; } /* Style for radio options */ .radio-group label { background: #374151 !important; border: none !important; border-radius: 8px !important; padding: 8px 16px !important; color: white !important; } /* Selected radio option */ .radio-group label[data-selected="true"] { background: #6366f1 !important; color: white !important; } button { border-radius: 8px !important; } """ # Global variables to store loaded models and tokenizers loaded_models = {} loaded_tokenizers = {} def load_model(model_size: str): """Load model and tokenizer based on selected size""" if model_size not in loaded_models: model_map = { "1B": "tiiuae/Falcon3-1B-Instruct", "3B": "tiiuae/Falcon3-3B-Instruct", "7B": "tiiuae/Falcon3-7B-Instruct", "10B": "tiiuae/Falcon3-10B-Instruct", } model_path = model_map[model_size] print(f"Loading model: {model_path}") loaded_models[model_size] = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.bfloat16, ).to(device) loaded_tokenizers[model_size] = AutoTokenizer.from_pretrained(model_path) return loaded_models[model_size], loaded_tokenizers[model_size] #load_model("10B") #load_model("3B") #load_model("1B") load_model("7B") logs_id = os.getenv("LOGS_ID") logs_token = os.getenv("HF_LOGS_TOKEN") logs_file = Path("logs/") / f"data_{uuid.uuid4()}.json" logs_folder = logs_file.parent scheduler = CommitScheduler( repo_id=logs_id, repo_type="dataset", folder_path=logs_folder, path_in_repo="data", every=5, token=logs_token, private=True, ) @spaces.GPU def stream_chat( message: str, history: list, model_size: str, temperature: float = 0.3, max_new_tokens: int = 1024, top_p: float = 1.0, top_k: int = 20, repetition_penalty: float = 1.2, ): model, tokenizer = load_model(model_size) # Create new history list with current message new_history = history + [[message, ""]] conversation = [] # Only include previous messages in the conversation for prompt, answer in history: conversation.extend([ {"role": "system", "content": SYSTEM_PROMPT}, {"role": "user", "content": prompt}, {"role": "assistant", "content": answer}, ]) conversation.append({"role": "user", "content": message}) input_text = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True) inputs = tokenizer.encode(input_text, return_tensors="pt").to(device) streamer = TextIteratorStreamer(tokenizer, timeout=40.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( input_ids=inputs, max_new_tokens=max_new_tokens, do_sample=False if temperature == 0 else True, top_p=top_p, top_k=top_k, temperature=temperature, repetition_penalty=repetition_penalty, streamer=streamer, pad_token_id=tokenizer.pad_token_id, ) with torch.no_grad(): thread = Thread(target=model.generate, kwargs=generate_kwargs) thread.start() buffer = "" for new_text in streamer: buffer += new_text buffer = buffer.replace("\nUser", "") buffer = buffer.replace("\nSystem", "") new_history[-1][1] = buffer yield new_history with scheduler.lock: with logs_file.open("a") as f: f.write(json.dumps({"input": input_text.replace(SYSTEM_PROMPT, ""), "output": buffer.replace(SYSTEM_PROMPT, ""), "model": model_size})) f.write("\n") def clear_input(): return "" def add_message(message: str, history: list): if message.strip() != "": history = history + [[message, ""]] return history def clear_session() -> Tuple[str, List]: return '', [] def choose_model(radio: str) -> Tuple[gr.Markdown, gr.Chatbot, str]: mark_ = gr.Markdown(value=f"
Falcon3 {radio} ChatBot
") chatbot = gr.Chatbot(label=f'Falcon3-{radio}-Instruct', value=[]) return mark_, chatbot, "" def main(): with gr.Blocks(css=CSS, theme="soft") as demo: gr.HTML(TITLE) gr.HTML(SUB_TITLE) gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button") with gr.Row(): options_models = ["1B", "3B", "7B", "10B"] radio = gr.Radio( choices=options_models, label="Model Size:", value="7B", elem_classes="radio-group" ) with gr.Row(): with gr.Accordion(label="Chat Interface", open=True): mark_ = gr.Markdown("""
Falcon3 7B ChatBot
""") chatbot = gr.Chatbot( label='Falcon3-7B-Instruct', height=500, container=True, elem_classes=["chat-container"] ) with gr.Accordion(label="โš™๏ธ Parameters", open=False): temperature = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.3, label="Temperature") max_new_tokens = gr.Slider(minimum=128, maximum=32768, step=128, value=1024, label="Max new tokens") top_p = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="Top-p") top_k = gr.Slider(minimum=1, maximum=100, step=1, value=20, label="Top-k") repetition_penalty = gr.Slider(minimum=1.0, maximum=2.0, step=0.1, value=1.2, label="Repetition penalty") textbox = gr.Textbox(lines=1, label='Input') with gr.Row(): clear_history = gr.Button("๐Ÿงน Clear History") submit = gr.Button("๐Ÿš€ Send") # Chain of events for submit button submit_event = submit.click( fn=add_message, inputs=[textbox, chatbot], outputs=chatbot, queue=False ).then( fn=clear_input, outputs=textbox, queue=False ).then( fn=stream_chat, inputs=[textbox, chatbot, radio, temperature, max_new_tokens, top_p, top_k, repetition_penalty], outputs=chatbot, show_progress=True ) # Chain of events for enter key enter_event = textbox.submit( fn=add_message, inputs=[textbox, chatbot], outputs=chatbot, queue=False ).then( fn=clear_input, outputs=textbox, queue=False ).then( fn=stream_chat, inputs=[textbox, chatbot, radio, temperature, max_new_tokens, top_p, top_k, repetition_penalty], outputs=chatbot, show_progress=True ) clear_history.click(fn=clear_session, outputs=[textbox, chatbot]) radio.change(choose_model, inputs=[radio], outputs=[mark_, chatbot, textbox]) #demo.queue(api_open=False, default_concurrency_limit=40) demo.launch() if __name__ == "__main__": main()